The Thermal Conductivity Simulation Calculation of Polyacryonitrile-Based Carbon Fiber/Pitch-Based Carbon/Carbon Composites

Article Preview

Abstract:

The thermal conductivity of polyacryonitrile-based carbon fiber/pitch-based carbon/carbon composites was simulated by the finite element analysis. After the density, thermal capacity and thermal conductivity of graphite and carbon fiber were given for known parameters, the geometric grid figure) was generated after the Gambit software processed the unit geometric model grids and the thermal conductivities of carbon/carbon composites were simulated by the Fluent software.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

93-98

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Murakami, N. Nishiki, K. Nakamura, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon, vol. 30, 1992, pp.255-262.

DOI: 10.1016/0008-6223(92)90088-e

Google Scholar

[2] X. G. Liu. The development and prospects of carbon science [J]. New Carbon Materials, vol. 24, 2009, pp.282-288.

Google Scholar

[3] E. Fitzer. The future of carbon-carbon composites [J]. Carbon, vol. 25, 1987, pp.163-190.

DOI: 10.1016/0008-6223(87)90116-3

Google Scholar

[4] William Fawcett, Dinesh K. Shetty. Effects of carbon nanofibers on cell morphology, thermal conductivity and crush strength of carbon foam[J]. Carbon, vol. 48, 2010, pp.68-80.

DOI: 10.1016/j.carbon.2009.08.032

Google Scholar

[5] B. N. Enweani, J. W. Davis, A. A. Haasz, et al. Thermal diffusivity/ conductivity of doped graphite [J]. Journal of Nuclear Materials, vol. 224, 1995, pp.245-253.

DOI: 10.1016/0022-3115(95)00068-2

Google Scholar

[6] Y. Z. Song, H. P. Qiu, Q. G. Guo, et al. Effect of the binder on the electrical and thermal conductivity of bulk graphite [J]. New Carbon Materials, vol. 17, 2002, pp.56-60.

Google Scholar

[7] K. Chu, C. C. Jia, X. B. Liang. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance[J]. Materials and Design, vol. 30, 2009, p.4311–4316.

DOI: 10.1016/j.matdes.2009.04.019

Google Scholar

[8] J. F. Wang, J. K. Carsonb, M. F. Northc and D. J. Clelanda. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases[J]. International Journal of Heat and Mass Transfer, vol. 51, May 2008, pp.2389-2397.

DOI: 10.1016/j.ijheatmasstransfer.2007.08.028

Google Scholar

[9] K. Sanada, Y. Tada, Y. Shindo. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers [J]. Compsites Part A, vol. 40, 2009, pp.724-743.

DOI: 10.1016/j.compositesa.2009.02.024

Google Scholar

[10] L. Yan, B. Zhu, Y. Jin, C. G. Wang. Feasibility analysis about optimize and design of the carbon fiber pre-oxidation furnace by Fluent [J]. The World of Building Materials, vol. 30, 2009, pp.97-100.

Google Scholar

[11] R. J. Wang. Fluent technical foundation and application example [M]. Beijing: Tsinghua University Press, 2007, p.257.

Google Scholar

[12] Z. J. Liu, Q. G. Guo, W. L. Shi, et al. Graphite block with high thermal conductivity derived from natural graphite flake [J]. Carbon, vol. 46, 2008, pp.414-421.

DOI: 10.1016/j.carbon.2007.11.050

Google Scholar

[13] Y. L. Qiu, J. Z. Liang. Comparison between simulated value and measured value of thermal conductivity coefficient of LDPE/graphite composite [J]. Plastics Science and Technology, 37, 2009, pp.38-41.

Google Scholar