Synthesis, Characterization and Anticorrosion Performance of Modified TiO2 as Inhibitor

Article Preview

Abstract:

Little attention has been paid to the nano-TiO2 as corrosion inhibitor before. In this paper, Myristic acid-modified nano-TiO2 (MA-TiO2) were synthesized by Myristic acid and tetrabutyl titanate via the sol-gel method, and it was characterized by IR and TEM. MA-TiO2 was dispersed in oil, and used as a corrosion inhibitor. From the Tafel plots and EIS spectra, we can know that the values of the current densities decreased by the addition of MA-TiO2. Because of the MA-TiO2 formed a deposition layer in the surface of 45# carbon steel panels, the current density of the the base oil with MA-TiO2 is much smaller than the base oil. The inhibition efficiency was over 90% with added 5 wt % TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Pages:

109-115

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li, W., S. Shah, et al. J Vac Sci Technol B. 2002, 20, 2303.

Google Scholar

[2] Schubert, U., S. Tewinkel, et al. Chem. Mater. 1996, 8(8), (2047).

Google Scholar

[3] Niederberger, M., G. Garnweitner, et al. Chem. Mater. 2004, 16(7), 1202.

Google Scholar

[4] Shen, G., Y. Chen, et al. Electrochimica Acta. 2005, 50(25-26), 5083.

Google Scholar

[5] Park, H., K. Kim, et al. J. Phys. Chem. B. 2002, 106(18), 4775.

Google Scholar

[6] Zubillaga, O., F. Cano, et al. Surf Coat Tech. 2008, 202(24), 5936.

Google Scholar

[7] Schmitt, G., Br. Corros. J. 1984, 19(4), 165.

Google Scholar

[8] Zheludkevich, M. L., D. G. Shchukin, et al. Chem Mater. 2007, 19(3), 402.

Google Scholar

[9] Ou, Y., J. Lin, et al. J Mol Catal A-Chem. 2005, 241(1-2), 59.

Google Scholar

[10] Perrin, F., V. Nguyen, et al. J Sol-Gel Sci and Techn. 2003, 28(2), 205.

Google Scholar

[11] Doeuff, S., M. Henry, et al. J Non-cryst Solids. 1987, 89(1-2), 206.

Google Scholar

[12] Ateya, B., B. Abo-Elkhair, et al. Corros Sci. 1976, 16(3), 163.

Google Scholar

[13] Abboud, Y., A. Abourriche, et al. Appl Surf Sci. 2006, 252(23), 8178.

Google Scholar

[14] Zheludkevich, M. L., I. M. Salvado, et al. J Mater Chem. 2005, 15(48), 5099.

Google Scholar

[15] A.A. Aksut, W.J. Lorenz, F. Mansfeld, Corros. Sci. 1982, 22, 611.

Google Scholar

[16] Cao, P., R. Gu, et al. Langmuir. 2002, 18(20), 7609.

Google Scholar

[17] Bentiss, F., M. Traisnel, et al. Appl Surf Sci. 1999, 152(3-4), 237.

Google Scholar

[18] El-Rehim, S., M. Ibrahim, et al. J Appl Electrochem. 1999, 29(5), 593.

Google Scholar

[19] Zheludkevich, M. L., K. Yasakau, et al. Electrochem Commun. 2007, 9(10), 2622.

Google Scholar

[20] K. C. Emregül, O. Atakol, Mater. Chem. Phys. 2004, 83, 337.

Google Scholar