Temperature Dependent Photoluminescence of ZnO Nanorods Synthesized by Hydrothermal Method

Article Preview

Abstract:

Temperature dependent photoluminescence of ZnO nanorods synthesized by hydrothermal method is studied. According to fifteen photoluminescent curves which were measured from 78 K to 288 K with an interval of 15 K, peak energy of exciton emissions, integral intensity of exciton emission peaks and integral intensity of deep-level emission peaks as a function of temperature were studied. The experimental data were fitted by Bose-Einstein relation and thermal activation function. By fitting, some important parameters were obtained and compared, such as the Einstein temperature for the excitons, the thermal activation energy of excitons or deep-level defects etc.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1242-1246

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 15 (2003) 351-352.

DOI: 10.1002/adma.200390087

Google Scholar

[2] M. H. Huang, S.Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] S. Chu, D. Li, P.-C. Chang, J. G. Lu, Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays, Nanoscale Res Lett. 6 (2011) 38-38.

DOI: 10.1007/s11671-010-9804-x

Google Scholar

[4] M.-H. Lai, A. Tubtimtae, M.-W. Lee, G.-J.Wang, ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer, International Journal of Photoenergy 2010 (2010) 497095.

DOI: 10.1155/2010/497095

Google Scholar

[5] W. I. Park, G. C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater. 16 (2004) 87-90.

DOI: 10.1002/adma.200305729

Google Scholar

[6] J. Elias, C. Le´vy-Cle´ment, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, L. Philippe, Hollow Urchin-like ZnO thin Films by Electrochemical Deposition, Adv. Mater. 22 (2010) 1607-1612.

DOI: 10.1002/adma.201090045

Google Scholar

[7] M. Estruga, I. Gonzalez-Valls, C. Domingo, M. Lira-Cantu, and J. A. Ayllón, A Clean Low-Temperature ZnO Deposition Method for Multipurpose Applications, Eur. J. Inorg. Chem. 2011 (2011) 821-825.

DOI: 10.1002/ejic.201000966

Google Scholar

[8] H. B. Ye, J. F. Kong, W. Z. Shen, J. L. Zhao, and X. M. Li, Temperature-dependent photoluminescence of undoped, N-doped and N-In codoped ZnO thin films, J. Phys. D, Appl. Phys. 40 (2007) 5588-5591.

DOI: 10.1088/0022-3727/40/18/013

Google Scholar

[9] A. Zawadzka, P. Płóciennik, Z. Łukasiak, K. Bartkiewicz, A. Korcala, Temperature dependent photoluminescence process in ZnO thin films grown on quartz by sol-gel method, IEEE ICTON-MW 2009. 3rd (ICTON Mediterranean Winter Conference,2009.) 10-12 Dec. 2009.

DOI: 10.1109/ictonmw.2009.5385623

Google Scholar

[10] L. Fan, H. Song, T. Li, L. Yu, Z. Liu, G. Pan, Y. Lei, X. Bai, T. Wang, Z. Zheng, X. Kong, Hydrothermal synthesis and photoluminescent properties of ZnO nanorods, Journal of Luminescence 122-123 (2007) 819-821.

DOI: 10.1016/j.jlumin.2006.01.297

Google Scholar

[11] A. Setoguchi, H. Nakanishi, Photoreflectance spectra of excitonic polaritons in GaN substrate prepared by lateral epitaxial overgrowth, Appl. Phys. Lett. 76 (2000) 1576-1578.

DOI: 10.1063/1.126100

Google Scholar

[12] H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, B. K. Meyer, Optical investigations on excitons bound to impurities and dislocations in ZnO, Optical Materials 23 (2003) 33-37.

DOI: 10.1016/s0925-3467(03)00055-7

Google Scholar

[13] B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X. W. Fan, The photoluminescence of ZnO thin films grown on Si (1 0 0) substrate by plasma-enhanced chemical vapor deposition, J. Crystal Growth 240 (2002) 479-483.

DOI: 10.1016/s0022-0248(02)00929-6

Google Scholar

[14] S. F. Chichibu, T. Sota, P. Fons, K. Iwata, A. Yamada, K. Matsubara, and S. Niki, Observation of Exciton-Polariton Emissions from a ZnO Epitaxial Film on the a-Face of Sapphire Grown by Radical-Source Molecular-Beam-Epitaxy, Jpn. J. Appl. Phys. 41 (2002) L935-L937.

DOI: 10.1143/jjap.41.l935

Google Scholar

[15] Y. P. Varshni, Physica, Temperature dependence of the energy gap in semiconductors 34 (1967) 149-154.

DOI: 10.1016/0031-8914(67)90062-6

Google Scholar

[16] S. S. Chang, G. J. Choi, H. J. Park, M. E. Stora, and R. E. Hummel, UV and green photoluminescence from spark-processed zinc, Materials Science and Engineering B 83 (2001) 29-34.

DOI: 10.1016/s0921-5107(00)00799-6

Google Scholar