Preparation and Characterizations of Na2Ti3O7, H2Ti3O7 and TiO2 Nanobelts

Article Preview

Abstract:

In this paper, the Ti-O-Compound nanobelts from commercial TiO2 (annatase phase) were synthesized via the alkali-hydrothermal process. The as-synthesized nanobelts are sodium titanate, hydrogen titanate and anatase with general formula Na2Ti3O7, H2Ti3O7 and TiO2, respectively. The nanobelts are characterized by Thermogravimetric/Differential Thermal Analysis (TG/DTA), X-ray Diffraction (XRD), Infrared Spectra (IR) and Scanning Electron Microscope (SEM) apparatuses. The characterization indicates that the nanobelts with typical widths of 50 to 200 nm, thicknesses of 20 to 50 nm, and up to a few millimeters in length. The conversion mechanisms between the layer titanate and anatase of nanobelts have been discussed in this study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1233-1237

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol.354 (1991), p.56

Google Scholar

[2] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737

Google Scholar

[3] Y.M. Wang, S.W. Liu, M. K. Lü, S. F. Wang, F. Gu, X. P. Cui and J. Pan: J. Mole. Cata. A: Chem. Vol. 215 (2004), p.137

Google Scholar

[4] Zhen Ma, Steven H. Overbury and Sheng Dai: J. Mole. Cata. A: Chem. Vol. 273 (2007), p.186.

Google Scholar

[5] I. A. Al-Homoudi, J. S. Thakur, R. Naik, G. W. Auner and G. Newaz: Appl. Sur. Sci., Vol. 253(2007), p.8607

Google Scholar

[6] A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe: Sens. Actua. B Vol. 93(2003), p.509

Google Scholar

[7] G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko and C. A. Grimes: J. Mater. Res. Vol. 19(2004), p.628

Google Scholar

[8] T. Kasuga, M. Hiramatsu and A. Hoson: Langmuir Vol. 14(1998), p.3160

Google Scholar

[9] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L. M. Peng: Appl. Phys. Lett. Vol. 22(2001), p.3702

Google Scholar

[10] Q. Chen, W. Zhou, G. Du and L.M. Peng: Adv. Mater. Vol. 14(2002), p.1208

Google Scholar

[11] X. Sun and Y. Li: J. Chem. Eur. Vol. 9(2003), p.2229

Google Scholar

[12] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang: J. Chem. Soc, Dalton ans. Vol. 20 (2003), p.3898

Google Scholar

[13] Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang and Z. L. Wang,Adv. Funct. Mater. Vol. 18(2008) , p.1131

DOI: 10.1002/adfm.200701120

Google Scholar

[14] Y. Q. Zheng, E. W. Shi, Z. Z. Chen,W. J. Li and X. F. Hu: J. Mater. Chem., 11(2001), p.1547

Google Scholar

[15] S. Andersson and A. D. Wadsley, Acta Crystallogr. Vol. 14(1961), p.1245

Google Scholar

[16] J. K. Burdett, T. Hughbanks, G. J. Miller, J.W. Richardson and J. V. Smith: J. Am. Chem. Soc. Vol. 109(1987), p.3639

Google Scholar

[17] Y. Q. Zheng, E. W. Shi, W. J. Li,Z. Z. Chen, W. Z. Zhong and X. F. Hu: Sci. China, Ser. E Vol. 45(2002) , p.120

Google Scholar

[18] S. Andersson and A. D. Wadsley: Crystallogr. Reports, Vol. 48 (2003), p.24

Google Scholar

[19] M. Wei, Y. Konishi, H. Zhou, H. Sugihara and H. Arakawa: Chem. Phys. Lett. Vol. 400(2004) , p.231

Google Scholar

[20] S. Zhang, Q. Chen and L. M. Peng: Phys. Rev. B, Vol. 71 (2005), p.014104

Google Scholar

[21] H. Zhu, X. Gao, Y. Lan, D. Song, Y. Xi and J. Zhao: J. Am. Chem. Soc. Vol. 126(2004), p.8380

Google Scholar