Carbon Nanotubes-Doped Glassy Carbon Ceramic Composite Electrode and its Electrocatalytic Reduction of Nitrite

Article Preview

Abstract:

A conductive glassy carbon ceramic composite electrode (GCCE) comprised of multi-walled carbon nanotubes (MWNTs) and glassy carbon microparticles in an organically modified silicate matrix was fabricated using a sol-gel method. The electrode thus prepared exhibits electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. A linear range from 2.5×10-5 to 3×10-3 M for the detection of sodium nitrite has been observed at the composite electrode with a sensitivity of 9.6 μA/mM and a detection limit of 9×10-6 M based on a signal-to-noise ratio of 3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1215-1220

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Alber, J.A. Cox, Electrochemistry in solids prepared by sol-gel processes, Microchim. Acta 127 (1997) 131-147.

DOI: 10.1007/bf01242718

Google Scholar

[2] J. Lin, C.W. Brown, Sol-gel glass as a matrix for chemical and biochemical sensing, Trends Anal. Chem. 16 (1997) 200-211.

DOI: 10.1016/s0165-9936(97)00021-6

Google Scholar

[3] J. Wang, Sol–gel materials for electrochemical biosensors, Anal. Chim. Acta 399 (1999) 21-27.

Google Scholar

[4] M.E. Tess, J.A. Cox, Chemical and biochemical sensors based on advances in materials chemistry, J. Pharm. Biomed. Anal. 19 (1999) 55-68.

Google Scholar

[5] M.M. Collinson, A.R. Howells, Peer Reviewed: Sol–gels and electrochemistry: research at the intersection, Anal. Chem. 72 (2000) 702A-709A.

DOI: 10.1021/ac0029556

Google Scholar

[6] M. Tsionsky, G. Gun, V. Glezer, O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications, Anal. Chem. 66 (1994) 1747–1753.

DOI: 10.1021/ac00082a024

Google Scholar

[7] A. Walcarius, Electroanalysis with pure, chemically modified and sol-gel-derived silica-based materials, Electroanalysis 13 (2001) 701–718.

DOI: 10.1002/1521-4109(200105)13:8/9<701::aid-elan701>3.0.co;2-6

Google Scholar

[8] L. Rabinovich, O. Lev, Sol-gel derived composite ceramic carbon electrodes, Electroanalysis 13 (2001) 265–275.

DOI: 10.1002/1521-4109(200103)13:4<265::aid-elan265>3.0.co;2-2

Google Scholar

[9] S.D. Holmstrom, J.A. Cox, Electrocatalysis at a conducting composite electrode doped with a ruthenium(II) metallodendrimer, Anal. Chem. 72 (2000) 3191-3195.

DOI: 10.1021/ac0002137

Google Scholar

[10] J. Wang, P.V.A. Pamidi, Sol−gel-derived gold composite electrodes, Anal. Chem. 69 (1997) 4490–4494.

DOI: 10.1021/ac970680x

Google Scholar

[11] B. Wang, J. Zhang, S. Dong, Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosens. Bioelectron. 15 (2000) 397-402.

DOI: 10.1016/s0956-5663(00)00096-8

Google Scholar

[12] S. Sampath, O. Lev, Inert metal-modified, composite ceramic−carbon, amperometric biosensors: renewable, controlled reactive layer, Anal. Chem. 68 (1996) 2015–(2021).

DOI: 10.1021/ac951094b

Google Scholar

[13] P. Wang, Y. Yuan, X. Wang, G. Zhu, Renewable three-dimensional Prussian blue modified carbon ceramic electrode, J. Electroanal. Chem. 493 (2000) 130-134.

DOI: 10.1016/s0022-0728(00)00339-9

Google Scholar

[14] D.R. Shankaran, N. Uehara, T. Kato, A novel hydrogen peroxide sensor based on specifically interacted silver dispersed sol-gel derived ceramic composite electrode, Anal. Sci. 18 (2002) 935-937.

DOI: 10.2116/analsci.18.935

Google Scholar

[15] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[16] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787–1800.

Google Scholar

[17] S.B. Sinnott, Chemical functionalization of carbon nanotubes, J. Nanosci. Nanotech. 2 (2002) 113-123.

Google Scholar

[18] P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41 (1996) 121-125.

DOI: 10.1016/0302-4598(96)05078-7

Google Scholar

[19] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J. 73 (2002)325-333.

DOI: 10.1016/s0026-265x(02)00102-9

Google Scholar

[20] Z. Wang, J. Liu, Q. Liang, Y. Wang, G. Luo, Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid, Analyst 127 (2002) 653-658.

DOI: 10.1039/b201060g

Google Scholar

[21] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, S.F.Y. Li, Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode, Sens. Actuat. B 87 (2002) 168-172.

DOI: 10.1016/s0925-4005(02)00232-0

Google Scholar

[22] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes, Electroanalysis 14 (2002) 225–230.

DOI: 10.1002/1521-4109(200202)14:3<225::aid-elan225>3.0.co;2-i

Google Scholar

[23] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem. 74 (2002) 1993–(1997).

DOI: 10.1021/ac010978u

Google Scholar

[24] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 14 (2002) 743-746.

DOI: 10.1016/s1388-2481(02)00451-4

Google Scholar

[25] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection, Talanta 58 (2002)529-534.

DOI: 10.1016/s0039-9140(02)00318-1

Google Scholar

[26] F.H. Wu, G.C. Zhao, X.W. Wei, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun. 4 (2002) 690-694.

DOI: 10.1016/s1388-2481(02)00435-6

Google Scholar

[27] P.J. Britto, K.S.V. Santhanam, Improved charge transfer at carbon nanotube electrodes, Adv. Mater. 11 (1999) 154–157.

DOI: 10.1002/(sici)1521-4095(199902)11:2<154::aid-adma154>3.0.co;2-b

Google Scholar

[28] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287 (2000) 1801-1804.

DOI: 10.1126/science.287.5459.1801

Google Scholar

[29] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.P. Sun, Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett. 2 (2002) 311–314.

DOI: 10.1021/nl010095i

Google Scholar

[30] J.J. Daris, R.J. Coles, H. Allen, D. Hill, Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem. 440 (1997) 279-282.

Google Scholar