[1]
K.S. Alber, J.A. Cox, Electrochemistry in solids prepared by sol-gel processes, Microchim. Acta 127 (1997) 131-147.
DOI: 10.1007/bf01242718
Google Scholar
[2]
J. Lin, C.W. Brown, Sol-gel glass as a matrix for chemical and biochemical sensing, Trends Anal. Chem. 16 (1997) 200-211.
DOI: 10.1016/s0165-9936(97)00021-6
Google Scholar
[3]
J. Wang, Sol–gel materials for electrochemical biosensors, Anal. Chim. Acta 399 (1999) 21-27.
Google Scholar
[4]
M.E. Tess, J.A. Cox, Chemical and biochemical sensors based on advances in materials chemistry, J. Pharm. Biomed. Anal. 19 (1999) 55-68.
Google Scholar
[5]
M.M. Collinson, A.R. Howells, Peer Reviewed: Sol–gels and electrochemistry: research at the intersection, Anal. Chem. 72 (2000) 702A-709A.
DOI: 10.1021/ac0029556
Google Scholar
[6]
M. Tsionsky, G. Gun, V. Glezer, O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications, Anal. Chem. 66 (1994) 1747–1753.
DOI: 10.1021/ac00082a024
Google Scholar
[7]
A. Walcarius, Electroanalysis with pure, chemically modified and sol-gel-derived silica-based materials, Electroanalysis 13 (2001) 701–718.
DOI: 10.1002/1521-4109(200105)13:8/9<701::aid-elan701>3.0.co;2-6
Google Scholar
[8]
L. Rabinovich, O. Lev, Sol-gel derived composite ceramic carbon electrodes, Electroanalysis 13 (2001) 265–275.
DOI: 10.1002/1521-4109(200103)13:4<265::aid-elan265>3.0.co;2-2
Google Scholar
[9]
S.D. Holmstrom, J.A. Cox, Electrocatalysis at a conducting composite electrode doped with a ruthenium(II) metallodendrimer, Anal. Chem. 72 (2000) 3191-3195.
DOI: 10.1021/ac0002137
Google Scholar
[10]
J. Wang, P.V.A. Pamidi, Sol−gel-derived gold composite electrodes, Anal. Chem. 69 (1997) 4490–4494.
DOI: 10.1021/ac970680x
Google Scholar
[11]
B. Wang, J. Zhang, S. Dong, Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosens. Bioelectron. 15 (2000) 397-402.
DOI: 10.1016/s0956-5663(00)00096-8
Google Scholar
[12]
S. Sampath, O. Lev, Inert metal-modified, composite ceramic−carbon, amperometric biosensors: renewable, controlled reactive layer, Anal. Chem. 68 (1996) 2015–(2021).
DOI: 10.1021/ac951094b
Google Scholar
[13]
P. Wang, Y. Yuan, X. Wang, G. Zhu, Renewable three-dimensional Prussian blue modified carbon ceramic electrode, J. Electroanal. Chem. 493 (2000) 130-134.
DOI: 10.1016/s0022-0728(00)00339-9
Google Scholar
[14]
D.R. Shankaran, N. Uehara, T. Kato, A novel hydrogen peroxide sensor based on specifically interacted silver dispersed sol-gel derived ceramic composite electrode, Anal. Sci. 18 (2002) 935-937.
DOI: 10.2116/analsci.18.935
Google Scholar
[15]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[16]
P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787–1800.
Google Scholar
[17]
S.B. Sinnott, Chemical functionalization of carbon nanotubes, J. Nanosci. Nanotech. 2 (2002) 113-123.
Google Scholar
[18]
P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41 (1996) 121-125.
DOI: 10.1016/0302-4598(96)05078-7
Google Scholar
[19]
J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J. 73 (2002)325-333.
DOI: 10.1016/s0026-265x(02)00102-9
Google Scholar
[20]
Z. Wang, J. Liu, Q. Liang, Y. Wang, G. Luo, Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid, Analyst 127 (2002) 653-658.
DOI: 10.1039/b201060g
Google Scholar
[21]
Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, S.F.Y. Li, Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode, Sens. Actuat. B 87 (2002) 168-172.
DOI: 10.1016/s0925-4005(02)00232-0
Google Scholar
[22]
J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes, Electroanalysis 14 (2002) 225–230.
DOI: 10.1002/1521-4109(200202)14:3<225::aid-elan225>3.0.co;2-i
Google Scholar
[23]
J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem. 74 (2002) 1993–(1997).
DOI: 10.1021/ac010978u
Google Scholar
[24]
M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 14 (2002) 743-746.
DOI: 10.1016/s1388-2481(02)00451-4
Google Scholar
[25]
Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection, Talanta 58 (2002)529-534.
DOI: 10.1016/s0039-9140(02)00318-1
Google Scholar
[26]
F.H. Wu, G.C. Zhao, X.W. Wei, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun. 4 (2002) 690-694.
DOI: 10.1016/s1388-2481(02)00435-6
Google Scholar
[27]
P.J. Britto, K.S.V. Santhanam, Improved charge transfer at carbon nanotube electrodes, Adv. Mater. 11 (1999) 154–157.
DOI: 10.1002/(sici)1521-4095(199902)11:2<154::aid-adma154>3.0.co;2-b
Google Scholar
[28]
P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287 (2000) 1801-1804.
DOI: 10.1126/science.287.5459.1801
Google Scholar
[29]
W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.P. Sun, Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett. 2 (2002) 311–314.
DOI: 10.1021/nl010095i
Google Scholar
[30]
J.J. Daris, R.J. Coles, H. Allen, D. Hill, Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem. 440 (1997) 279-282.
Google Scholar