Synthesis of α-Ni(OH)2 Peonies Assembled from Nanosheet Building Blocks and Corresponding NiO Porous Peonies

Article Preview

Abstract:

α-Ni(OH)2 peonylike structures assembled from nanosheets with thickness of 10nm were successfully synthesized via a hydrothermal method. The corresponding NiO peonylike structures with similar morphology to the α-Ni(OH)2 precursor were also be fabricated by thermal decomposition of the as-synthesized α-Ni(OH)2 at 350°C for 2 h in air. Samples are thoroughly characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, Brunauer-Emmett-Tellermethod (BET), and thermogravimetric analysis (TGA). The BET surface area for α-Ni(OH)2 and NiO are 36.0m2/g and 120.2 m²/g, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1207-1210

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Coudun, J.F. Hochepied: J. Phys. Chem. B Vol. 109 (2005), p.6069.

Google Scholar

[2] H. B. Zhou, Z. T. Zhou: Solid State Ionics Vol. 176 (2005), p. (1909).

Google Scholar

[3] P. Olivia, J. Leonardi, D. Delmas, J.J. Braconnier, M. Figlarz, F. Fievret, A. deGuibert: J. Power Sources Vol. 8 (1982), p.229.

Google Scholar

[4] H. Liang, L. Liu, Z. j. Yang, Y. Z. Yang: Cryst. Res. Technol. Vol. 45 (2010), P. 661.

Google Scholar

[5] S. Deki, A. Hosokawa, A. B. Béléké, M. Mizuhata: Thin Solid Films Vol. 517 (2009), p.1546.

DOI: 10.1016/j.tsf.2008.09.040

Google Scholar

[6] X. F. Song, L. Gao: J. Phys. Chem. C Vol. 112 (2008), p.15299.

Google Scholar

[7] P. Jeevanandam, Yu. Koltypin, A. Gedanken: Nano. Lett. Vol. 1 (2001), p.236.

Google Scholar

[8] L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, L. Li, L. Zhang: J. Solid State Chem. Vol. 180 (2007), p. (2095).

Google Scholar

[9] M. H. Cao, X. Y. He, J. Chen, C.W. Hu: Crystal Growth & Design Vol. 7 (2007), p.170.

Google Scholar

[10] D. B. Wang, C. X. Song, Z. S. Hu, X. Fu: J. Phys. Chem. B Vol. 109 (2005), p.1125.

Google Scholar

[11] L. Wang,Y. J. Hao,Y. Zhao, Q. Y. Lai, X.Y. Xu: J. Solid State Chem. Vol. 183 (2010), p.2576.

Google Scholar

[12] K.C. Ho, J. Jone: J. Electrochem. Soc. Vol. 137 (1990), p.149.

Google Scholar

[13] X.M. Ni, Q.B. Zhao, B.B. Li, J. Cheng, H.G. Zheng, Solid State Commun. Vol. 137 (2006), p.585.

Google Scholar

[14] L. Kumari, W.Z. Li: Physica E Vol. 41 (2009), p.1289.

Google Scholar

[15] M. Vidottil, R.P. Salvadora, S.I.C. Torresi: Ultrason. Sonochem. Vol. 16 (2009), p.35.

Google Scholar

[16] Y.L. Zhao, J.M. Wang, H. Chen, T. Pan, J.Q. Zhang, C.N. Cao: Int. J. Hydrogen Energ. Vol. 29 (2004), p.889.

Google Scholar

[17] X. F. Song , L. Gao: J. Am. Ceram. Soc. Vol. 91 (2008), p.3465.

Google Scholar

[18] A. Vinu, D. P. Sawant, K. Ariga, M. Hartmann, S.B. Halligudi: Microporous Mesoporous Mater. Vol. 80 (2005), p.195.

DOI: 10.1016/j.micromeso.2004.12.012

Google Scholar