Anatase Nano Titanium Oxide Synthesized Using the Hydrothermal Method and its Optical Absorption Properties

Article Preview

Abstract:

Anatase nano titanium oxide was synthesized with Ti(SO4)2 as titanium source and stronger ammonia water as precipitant using the hydrothermal method. The samples were characterized by XRD, SEM, TEM and UV-VIS. The results showed that the influence of the increase of the reaction time on as-prepared anatase nano titanium oxide was not obvious when stronger ammonia water was not added to Ti(SO4)2 solution. Anatase nano titanium oxide became small markedly under the same conditions when stronger ammonia water was added to Ti(SO4)2 solution. Anatase nano titanium oxide of about 20 nm in the diameter was obtained for 48 h with pH=9 at 240 °C by the hydrothermal method. That the size of Anatase nano titanium oxide particles became small was propitious to the blue shift of their absorption peak.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1198-1202

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na: J. Am. Chem. Soc. Vol. 123 (2001), p.12798.

Google Scholar

[2] J. Joo, T. Yu, Y. W. Kim, H. M. Park, F. Wu, J. Z. Zhang and T. Hyeon: J. Am. Chem. Soc. Vol. 125 (2003), p.6553.

Google Scholar

[3] U. Diebold: Surf. Sci. Rep. Vol. 48 (2003), p.53.

Google Scholar

[4] H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen and Y. Yan: Chem. Mater. Vol. 16 (2004), p.846.

Google Scholar

[5] F. Sayilkan, M. Asilturk, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu and E. Arpac: Mater. Lett. Vol. 60 (2006), p.230.

DOI: 10.1016/j.jhazmat.2005.08.027

Google Scholar

[6] J. G. Balfour: Technological Applications of Dispersions (Marcel Dekker, New York 1994).

Google Scholar

[7] Y. C. Yeh, T. Y. Tseng and D. A. Chang: J. Am. Ceram. Soc. Vol. 72 (1989), p.1472.

Google Scholar

[8] P. S. Awati, S. V. Awate, P. P. Shah and V. Ramaswamy: Catal. Commun. Vol. 4 (2003), p.393.

Google Scholar

[9] Y. H. Hsien, C. F. Chang, Y. H. Chen and S. Cheng: Appl. Catal. B Vol. 31 (2001), p.241.

Google Scholar

[10] C. Lizama, J. Freer, J. Baeza and H. D. Mansilla: Catal. Today Vol. 76 (2002), p.235.

Google Scholar

[11] N. Serpone, I. Texier, A. V. Emeline, P. Pichat, H. Hidaka and J. Zhao: J. Photochem. Photobiol. A Chem. Vol. 136 (2000), p.145.

Google Scholar

[12] B. Ohtani, M. Kakimoto, S. Nishimoto and T. Kagiya: J. Photochem. Photobiol. A Chem. Vol. 70 (1993), p.265.

Google Scholar

[13] H. J. Nam, T. Amemiya, M. Murabayashi and K. Itoh: J. Phys. Chem. B Vol. 108 (2004), p.8254.

Google Scholar

[14] Q. Zhang and L. Gao: Langmuir Vol. 19 (2003), p.967.

Google Scholar

[15] J. Polleux, N. Pinna, M. Antonietti and M. Niederberger: Adv. Mater. Vol. 16 (2004), p.436.

Google Scholar

[16] T. A. Ostomel and G. D. Stucky: Chem. Commun. Vol. 8 (2004), p.1016.

Google Scholar

[17] D. Zhang, L. Qi, J. Ma and H. Cheng: J. Mater. Chem. Vol. 12 (2002), p.3677.

Google Scholar

[18] M. Gratzel: Heterogeneous Photochemical Electron Transfer (CRC Press, Baton Rouge, FL 1998).

Google Scholar