Synthesis of Carbon/Carbon Core/Shell Nanofibers by Co-Pyrolysis of Tetrahydrofuran and Ferrocene

Article Preview

Abstract:

Carbon/carbon core/shell nanofibers with length up to several micrometres have been prepared by co-pyrolysis of tetrahydrofuran and ferrocene in a stainless steel autoclave at 600 °C. The diameter of carbon core is ~10 nm, and the thickness of carbon shell is ~20 nm. It is found that the graphene layers of carbon core are perpendicular to the ones of carbon shell in stacking orientation. Comparative experiments confirm that the metallic iron catalysts, originating from the decomposition of ferrocene, are responsible for the formation of nanofibers. When the ferrocene is absence, only solid carbon spheres are observed. Moreover, hollow hexapod-like carbon materials can be obtained with water introduced into reaction system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1211-1214

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] Y. H. Zhang, X. Sun: Adv. Mater. Vol. 19 (2007), p.961.

Google Scholar

[3] Y. Jiang, Y. Wu, S. Y. Zhang, C. Y. Xu, W. C. Yu, Y. Xie, Y. T. Qian: J. Am. Chem. Soc. Vol. 122 (2000), P. 12383.

Google Scholar

[4] X. M. Sun, Y. D. Li: Angew. Chem. Int. Ed. Vol. 43 (2004), p.597.

Google Scholar

[5] R. J. White, K. Tauer, M. Antonietti, M. -M. Titirici: J. Am. Chem. Soc. Vol. 132 (2010), p.17360.

Google Scholar

[6] J. M. Shen, Y. T. Feng: J. Phys. Chem. C. Vol. 112 (2008), p.13114.

Google Scholar

[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[8] A. D. Lueking, R. T. Yang, N. M. Rodriguez, R. T. K. Baker: Langmuir Vol. 20 (2003), p.714.

Google Scholar

[9] V. Vamvakaki, K. Tsagaraki, N. Chaniotakis: Anal. Chem. Vol. 78 (2006), P. 5538.

Google Scholar

[10] B. K. Balan, S. M. Unni, S. Kurungot: J. Phys. Chem. C. Vol. 113 (2009), p.17572.

Google Scholar

[11] Q. Bao, S. Bao, C. M. Li, X. Qi, C. Pan, J. Zang, Z. Lu, Y. Li, D. Y. Tang, S. Zhang, K. Lian: J. Phys. Chem. C. Vol. 112 (2008), p.3612.

DOI: 10.1021/jp710420k

Google Scholar

[12] X. Zhang, S. K. Manohar: Chem. Commun. (2006), p.2477.

Google Scholar

[13] S. B. Yoon, J. Y. Kim, F. Kooli, C. W. Lee, J. -S. Yu: Chem. Commun. (2003), p.1740.

Google Scholar

[14] D. G. McCulloch, S. Prawer, A. Hoffman: Phys. Rev. B Vol. 50 (1994), p.5905.

Google Scholar