Effect of Reaction Temperature on the Morphology of Carbon Nanofibers

Article Preview

Abstract:

Carbon nanofibers with various morphologies were synthesized by the catalytic pyrolysis of acetylene using nickel catalyst nanoparticles at different reaction temperatures. Experimental results demonstrate that temperature is a critical parameter for controlling the size and morphology of carbon fibers. Twin coiled fibers and linearly bifurcating fibers emanating from nickel particles were formed at 400 °C; whereas, only linear carbon nanofibers were obtained at reaction temperatures of 450 °C, 500 °C, and 550 °C. At low temperatures, nickel nanoparticles remain in the middle of two fibers, while nickel particles are positioned at one end of the linear fibers at high temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1247-1251

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56

Google Scholar

[2] S. Motojima, S. Hoshiya and Y. Hishikawa: Carbon Vol. 41 (2003), p.2658

Google Scholar

[3] C.J. Lee, T.J. Lee and J. Park: Chem. Phys. Lett. Vol. 340 (2001), p.413

Google Scholar

[4] E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel and C.M. Lukehart: J. Phys. Chem. B Vol. 105 (2001), p.8097

Google Scholar

[5] J. Koehne, H. Chen, J. Li, A.M. Cassell, Q. Ye, H.T. Ng, J. Han and M. Meyyappan: Nanotechnolology Vol. 14 (2003), p.1239

Google Scholar

[6] L. Zhang, A.V. Melechko, V.I. Merkulov, M.A. Guillorn, M.L. Simpson, D.H. Lowndes and M.J. Doktycz: Appl. Phys. Lett. Vol. 81 (2002), p.135

DOI: 10.1063/1.1490142

Google Scholar

[7] W.E. Alvarez, F. Pompeo, J.E. Herrera, L. Balzano and D.E. Resasco: Chem. Mater. Vol. 14 (2002), p.1853

Google Scholar

[8] H. Ogihara, M. Sadakane, Y. Nodasaka and W. Ueda: Chem. Mater. Vol. 18 (2006), p.4981

Google Scholar

[9] D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z.X. Yu, B. Tøtdal, N. Latorre, A. Monzón and A. Holmen: J. Catal. Vol. 229 (2005), p.82

Google Scholar

[10] L.Y. Yu, L.N. Sui, Y. Qin, F.L. Du and Zuolin Cui: Mater. Lett. Vol. 63 (2009), p.1677

Google Scholar

[11] S. Takenaka, M. Ishida, M. Serizawa, E. Tanabe and K. Otsuka: J. Phys. Chem. B Vol. 108 (2004), p.11464

Google Scholar

[12] A. Tanaka, S. Yoon and I. Mochida: Carbon Vol. 42 (2004), p.1291

Google Scholar

[13] G.B. Zheng, K. Kouda, H. Sano, Y. Uchiyama, Y.F. Shi and H.J. Quan: Carbon Vol. 42 (2004), p.635

Google Scholar

[14] P. Sampedro-Tejedor, A. Maroto-Valiente, D.M. Nevskaia, V. Múñoz, I. Rodríguez-Ramos and A. Guerrero-Ruíz: Diam. Relat. Mater. Vol. 16 (2007), p.542

DOI: 10.1016/j.diamond.2006.11.056

Google Scholar

[15] L. F. Dong, Z. L. Cui and Z. K. Zhang: Nanostructured Materials Vol. 8 (1997), p.815

Google Scholar

[16] Z.L. Cui and Z.K. Zhang: Nanostructured Materials Vol. 7 (1996), p.355

Google Scholar

[17] L.Y. Yu, L.N. Sui, Y. Qin and Z.L. Cui: Chem. Eng. J. Vol. 144 (2008), p.514

Google Scholar

[18] P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen and H. Topsøe: Science Vol. 295 (2002), p. (2053)

DOI: 10.1126/science.1069325

Google Scholar