Facile Fabrication of Free-Standing Titanium Dioxide Nanorods Array with Highly Efficient Ultraviolet Light Induced Photocatalytic Activity

Article Preview

Abstract:

In this paper, the fabrication and characterization of free-standing titanium dioxide nanorods array film with pure anatase-phase are presented. Highly oriented TiO2 nanorods array was firstly prepared by hydrothermal method with metal Ti foil, and then the free-standing film can be obtained through selective-dissolution of the metallic Ti substrate by Br2 steam with preserving the original array structure. The crystal structural, morphological, lattice structural and optical information of the free-standing array film were studied. In addition, photo-degradation of crystal voilet in aqueous solution was used as a probe to assess the photo-catalytic activity of the free-standing array film under UV irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1266-1270

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan, M. Gratzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] Y. Zhou, L. Cao, F. Zhang, B. He, H. Li: J. Electrochem. Soc Vol. 150 (2003), p. A1246.

Google Scholar

[3] A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe: Sens. Actuators B Vol. 103 (2004), p.312.

Google Scholar

[4] H. Wang, X. Tao, E. Newton: Optic. Mater. Vol. 27 (2004), p.161.

Google Scholar

[5] L. Kavan, M. Zukalova, M. Kalb, M. Graetzelb: J. Electrochem. Soc. Vol. 151 (2004), p. A1301.

Google Scholar

[6] Z.X. Lu, L. Zhou, Z.L. Zang, W.L. Shi, Z.X. Xie, H.Y. Xie, D.W. Pang: Langmuir Vol. 19 (2003), p.8765.

Google Scholar

[7] O.K. Varghese, M. Paulose, C.A. Grimes: Nature Vol. 4 (2009), p.592.

Google Scholar

[8] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes: J. Mater. Res. Vol. 19 (2004), p.628.

Google Scholar

[9] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki: Small Vol. 3 (2007), p.300.

Google Scholar

[10] J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon: J. Phys. Chem. B Vol. 109 (2005), p.13056.

Google Scholar

[11] B. Liu, E.S. Aydil: J. Am. Chem. Soc. Vol. 131 (2009), p.3985.

Google Scholar

[12] X.H. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes: Nano Lett. Vol. 8 (2008), p.3781.

Google Scholar

[13] S.C. Pillai, P. Periyat, R. George, E. Mccormack, M.K. Seery, et al: J. Phys. Chem. C Vol. 111 (2007), p.1605.

Google Scholar

[14] B, Liu, D. Deng, J.Y. Lee, J.Y. Lee, E.S. Aydil: J. Mater. Res. Vol. 25 (2010), p.1588.

Google Scholar

[15] S.P. Albu, A. Ghicov, P. Schmuki: ECS Trans. Vol. 16 (2009), p.195.

Google Scholar

[16] H.W. Peng, J.B. Li: J. Phy. Chem. C Vol. 112 (2008), p.20241.

Google Scholar

[17] E. Garnett, P.D. Yang: Nano Lett. Vol. 10 (2010), p.1082.

Google Scholar