β-Ni(OH)2 Flower-Like Spheres and Nanoflakes Synthesized Using the Hydrothermal Method and its Formation Mechanism

Article Preview

Abstract:

β-Ni(OH)2 flower-like spheres and nanoflakes were synthesized with strong ammonia water as precipitator and nickel nitrate as nickel source by the hydrothermal method. The phase structure and morphologies were analyzed using XRD and SEM. The results showed that under the same conditions of the pH value and the reaction time, the low temperature was propitious to synthesize β-Ni(OH)2 flower-like spheres. High temperature was in favor of the synthesis of β-Ni(OH)2 nanoflakes. Namely, β-Ni(OH)2 flower-like spheres were obtained at 180 °C for 48.0 h with pH=9.0. β-Ni(OH)2 nanoflakes were prepared at 240 °C for 48.0 h with pH=9.0. The formation mechanism was explored through observing influence of the conditions of the hydrothermal method on the morphologies of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1430-1434

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. A. Nelson, J. M. Elliott, G. S. Attard and J. R. Owen: Chem. Mater., Vol. 14 (2002), p.524.

Google Scholar

[2] N. Tzanetakis and K. Scott: J. Chem. Technol. Biotechnol., Vol. 79 (2004), p.919.

Google Scholar

[3] D. E. Reisner, A. J. Salkind, P. R. Strutt and T. D. Xiao: J. Power Sources, Vol. 65 (1997), p.231.

Google Scholar

[4] F. S. Cai, G. Y. Zhang, J. Chen, X. L. Gou, H. K. Liu and S. X. Dou: Angew. Chem., Vol. 116 (2004), p.4308.

Google Scholar

[5] K. Matsui, T. Kyotani and A. Tomita: Adv. Mater., Vol. 14 (2002), p.1216.

Google Scholar

[6] D. N. Yang, R. M. Wang, J. Zhang and Z. F. Liu: J. Phys. Chem. B, Vol. 108 (2004), p.7531.

Google Scholar

[7] C. Coudun and J. F. Hochepied: J. Phys. Chem. B, Vol. 109 (2005), p.6069.

Google Scholar

[8] Y. Wang, Q. S. Zhu and H. G. Zhang: Chem. Commun., Vol. 41 (2005), p.5231.

Google Scholar

[9] Z. H. Liang, Y. J. Zhu and X. L. Hu: J. Phys. Chem. B, Vol. 108 (2004), p.3488.

Google Scholar

[10] D. L. Chen and L. Gao: Chem. Phys. Lett., Vol. 405 (2005), p.159.

Google Scholar

[11] X .H. Liu, G. Z. Qiu, Z. Wang and X. G. Li: Nanotechnology, Vol. 16 (2005), p.1400.

Google Scholar

[12] X. M. Ni, Q. B. Zhao, J. Cheng, H. G. Zheng, B. B. Li and D. G. Zhang: Chem. Lett., Vol. 34 (2005), p.1408.

Google Scholar

[13] Z. C. Wu, X. Zhu, C. Pan and Z. Y. Xie: Chin. J. Inorg. Chem., Vol. 22 (2006), p.1371.

Google Scholar

[14] M. Cao, X. He, J. Chen and C. Hu: Cryst. Growth Des., Vol. 7 (2007), p.170.

Google Scholar

[15] G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li and Y. Lei: J. Phys. Chem. B, Vol. 110 (2006), p.15729.

Google Scholar

[16] G. T. Duan, W. P. Cai, Y. Y. Luo and F. Q. Sun: Adv. Funct. Mater., Vol. 17 (2007), p.644.

Google Scholar

[17] H. G. Yang and H. C. Zeng: J. Phys. Chem. B, Vol. 108 (2004), p.3492.

Google Scholar

[18] X. W. Lou, C. Yuan, E. Rhoades, Q. Zhang and L. A. Archer: Adv. Funct. Mater., Vol. 16 (2006), p.1679.

Google Scholar

[19] Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos: Science, Vol. 304 (2004), p.711.

Google Scholar

[20] S. Park, J. H. Lim, S. W. Chung and C. A. Mirkin: Science, Vol. 303 (2004), p.348.

Google Scholar

[21] R. L. Penn and J. F. Banfield: Science, Vol. 281 (1998), p.969.

Google Scholar