Comparison on Optical Properties of Cu-Al2O3 and Co-Al2O3 Nano-Array Composite Structure

Article Preview

Abstract:

Cu-Al2O3 (Co-Al2O3) nano-array composite structures assemblies with Cu (Co) grown in the pores of an anodic alumina membrane (AAM) were obtained by alternating current electrode position. Their transmitted spectra and polarized spectra are systematically investigated. Experimental results indicate that the transmittance of Cu-Al2O3 is superior to that of Co-Al2O3 in visible and infrared waveband, but the extinction ratio of Co-Al2O3 is better than that of Cu-Al2O3 in near infrared waveband.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1412-1415

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. DE Graeve, H. Terryn and G.E. Thompon, J. Appl. Electrochem., 32 (2002) 73–83.

Google Scholar

[2] C.K. Chung, T.Y. Liu and W.T. Chang, Microsyst. Technol., 16 (2010) 1451–1456.

Google Scholar

[3] G. Riveros, H. G´omez, A. Cortes, R.E. Mmarotti, E.A. Dalchiele, Appl. Phys. A, 81 (2005) 17–24.

Google Scholar

[4] G.Q. Ding, R. Yan, J.N. Ding, N.Y. Yuan and Y.Y. Zhu, Nanoscale. Res. Lett., 5 (2010) 1257–1263.

Google Scholar

[5] Z.Q. Xue, Q.D. Wu, H. Li, Thin Film Physics[M], (Beijing: Publishing House of Electronics Industry) (1991).

Google Scholar

[6] D.J. Sellmyer, M. Zheng and R. Skomski, J. Phys.: Condens. Matter., 13 (2001) 433-460.

Google Scholar

[7] M.M. Zheng, F.Q. Wu, Z.G. Liu, J.X. Tian, H. Xu,  Acta Optica Sinica (in Chinese), 29 (1) (2009) 277-280.

Google Scholar

[8] T.M. Whimey, J.S. Jiang, P.C. Searson, Science, 261 (1993) 1316-1319.

Google Scholar

[9] S. Manalis, K. Babcock, J. Massie, V. Elings, M. Dugas, Appl. Phys. Lett., 66 (1995) 585–258.

Google Scholar

[10] H. C . David, Nanowires begin to shine, Nature, 409 (2001) 2-33.

Google Scholar

[11] M. Ssito, M. Kirihara, T. Taniguchi, M. Miyagi, Appl. Phys. Lett., 55 (1989) 607–609.

Google Scholar

[12] F. Favier, E.C. Walter, M. P. Zach, T. Benter, R.M. Penner, Science, 293 (2001) 2227–2231.

DOI: 10.1126/science.1063189

Google Scholar

[13] S.W. Yao, G.J. Chi, W.G. Zhang, H.Z. Wang, L. Cui, J. Fan, Acta. Phys-Chim. Sin. (in Chinese), 18 (10) (2002) 930-933.

Google Scholar

[14] M. Saito, M. Shibasaki and S. Nakamura, Opt. Lett., 19 (10) (1994) 710-712.

Google Scholar

[15] M. Besterci, I. Kohu´tek, O. Velgosova, J. Mater. Sci., 43 (2008) 900–905.

Google Scholar

[16] Y.F. Yang, R.X. Zhou, S.F. Zhao and X.M. Zheng, Catal. Lett., 85, (2003) 1–2.

Google Scholar

[17] P.A. Chernavskii, G.V. Pankina and V.V. Lunin, Catal. Lett., 66 (2000) 121–124.

Google Scholar

[18] L.Y. Cha, W.C. Zheng, X.M. Gu and C.X. Xue, Optical Materials and Accessories (Ordnance Industry Press, Beijing, 1985) pp: 168-187.

Google Scholar

[19] K. Takano, M. Saito, and M. Miyagi, Appl. Opt., 33 (16) 3507-3512.

Google Scholar

[20] D.W. Zhang, G.H. Li and K. Song, Spectrosc. Spect. Anal., 22 (2) (2002) 195-197.

Google Scholar