Preparation and Characterization of Hydrophobic Mesoporous SiO2 Aerogel

Article Preview

Abstract:

Hydrophobic mesoporous silica aerogels were synthesized using cheap industrial grade tetraethyl orthosilicate (TEOS) as precursor by ambient pressure drying.The silica alcogels were prepared by acid-base sol-gel polymerization of the TEOS, the surfaces of silica alcogels were modified using trimethylchlorosilane/ hexamethyldisiloxane via simultaneous solvent exchange and surface modification. The attachment of trymethylsilyl (-Si(CH3)3) groups to the silica surface was confirmed by the presence of Si-CH3 peaks at 2963, 1256 and 845 cm−1 in the IR spectra. Properties of the aerogels were examined by SEM, TEM, XRD, BET and DTA-TG analyses. The results indicate that the aerogels in a typical amorphous state have a highly porous network with an average pore diameter in the range of 5–10 nm, have high specific surface area (931 m2/g) and are thermally stable up to 322 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1393-1397

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.W. Hrubesh: Chem. Ind. Vol. 17(1990), p.824.

Google Scholar

[2] G.C. Bond and S. Flamerz: Appl. Catal. Vol. 33(1987), p.219.

Google Scholar

[3] D. Zhang, L. Shi, J. Fang, X. Li and K. Dai: Mater. Lett. Vol. 59(2005), p.4044.

Google Scholar

[4] J.M. Schultz, K.I. Jensen and F.H. Kristiansen: Sol. Energy Mater. Sol. Cells . Vol. 89(2005), p.275.

Google Scholar

[5] M. Reim, W. Körner, J. Manara, S. Korder, M. Arduini-Schuster, H. -P. Ebert and J. Fricke: Sol. Energy. Vol. 79(2005), p.131.

DOI: 10.1016/j.solener.2004.08.032

Google Scholar

[6] D.J. Suh: J. Non-Cryst Solids. Vol. 350(2004), p.314.

Google Scholar

[7] S.W. Park, S.B. Jung, M.G. Kang, H.H. Park and H. -C. Kim: Appl. Surf. Sci. Vol. 216(2003), p.98.

Google Scholar

[8] P.B. Sarawade, J.K. Kim, H.K. Kim and H.T. Kim, Appl. Surf. Sci. Vol. 254(2007), p.574.

Google Scholar

[9] F. Schwertfeger, D. Frank, M. Schmidt: J Non-Cryst Solids, Vol. 225(1998), p.24.

Google Scholar

[10] A.V. Rao, M.M. Kulkarni: Mater. Res. Bull. Vol. 37(2002), p.1667.

Google Scholar

[11] A.V. Rao, M.M. Kulkarni: Mater. Res. Bull. Vol. 37(2002), p.1669.

Google Scholar

[12] R. Deshpande, D.M. Smith and C.J. Brinker: J. Non-Cryst. Solids. Vol. 144(1992), p.32.

Google Scholar

[13] X.C. Zhou, L.P. Zhong and Y.P. Xu: Inorg. Mater. Vol. 44(2008), p.976.

Google Scholar

[14] S.D. Bhagat, Y.H. Kim, G.B. Yi, Y.S. Ahn and J.G. Yeo: Micro. Meso. Mater. Vol. 253(2006), p.3231.

Google Scholar

[15] R.A. Oweini and H.E. Rassy: J. Mol. Struct. Vol. 919(2009), p.140.

Google Scholar

[16] C.J. Brinker and S.W. Scherere: Sol–Gel Scienece, Academic Press, San, Diego , (1990), p.501.

Google Scholar

[17] S. Lee and Y.C. Chad: Mater. Lett. Vol. 61(2007), p.3130.

Google Scholar

[18] S.K. Kang and S.Y. Choi: J. Kor. Ceram. Soc. Vol. 33(1996), p.1394.

Google Scholar

[19] A.C. Pierre, E. Elaloui and G.M. Pajonk: Langmuir Vol. 14(1998), p.66.

Google Scholar

[20] W.C. Li, A.H. Lu and S.C. Guo, J. Colloid Interface. Sci. Vol. 254(2002), p.153.

Google Scholar

[21] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: Pure Appl. Chem. Vol. 57(1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar