Nanocrystalline ZrO2 Porous Ceramics Fabricated by SPS

Article Preview

Abstract:

The porous ZrO2 ceramics was prepared by spark plasma sintering (SPS) at 520 °C. A dense closed micro-cellular ceramic structure was fabricated with micron Al90Mn9Ce1 alloy powders clading by 10 wt% ZrO2 nano-powder. SEM image showed that the thickness of ceramic cell wall was 1.0 - 2.0 μm. After deep corrosion with 10% HCl, an integrity nanocrystalline ZrO2 porous sample was obtained. Based on the experimental results, the transient spark plasma sintering mechanism of micron-nano mixing powder was also studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1398-1401

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Deville, E. Saiz and A.P. Tomsia: Biomater. Vol. 27(2006), pp.5480-5489.

Google Scholar

[2] S.F. Corbin and P.S. Apte: J. Am. Ceram. Soc. Vol. 82(1999), pp.693-701.

Google Scholar

[3] G.T. Chandrappa, N. Steunou and J. Livage: Nat. Vol. 416(2002), p.702.

Google Scholar

[4] A. Zampieri, P. Colombo, G.T.P. Mabande, T. Selvam, W. Schwieger and F. Scheffler: Adv. Mater. Vol. 16 (2004), pp.819-823.

DOI: 10.1002/adma.200306304

Google Scholar

[5] K. Tanabe and T. Yamaguchi: Catal. Today Vol. 20 (1994), pp.185-197.

Google Scholar

[6] H.W. Kim, S.Y. Lee, C.J. Bae, Y.J. Noh, H.E. Kia, H.M. Kim and J.S. Ko: Biomater. Vol. 24 (2003), pp.3277-3284.

Google Scholar

[7] D.C. Clupper, J.J. Mecholsky, G.P. La Torre and D.C. Greenspan: Biomater. Vol. 23(2002), pp.2599-2606.

Google Scholar

[8] M. Boaro, J.M. Vohs and R.J. Gorte: J. Am. Ceram. Soc. Vol. 86(2003), pp.395-400.

Google Scholar

[9] Y.H. Koh, E.J. Lee, B.H. Yoon, J.H. Song and H.E. Kim: J. Am. Ceram. Soc. Vol. 89(2006), pp.3646-3653.

Google Scholar

[10] H. Schmidt, D. Koch and G. Grathwohl: J. Am. Ceram. Soc. Vol. 84(2001), pp.2252-2255.

Google Scholar

[11] J. Han, C. Hong, X. Zhang, J.C. Du and W. Zhang: J. Eur. Ceram. Soc. Vol. 30(2010), P. 53 - 60.

Google Scholar

[12] M.A. Sharif and H. Sueyoshi: Ceram. Int. Vol. 35(2009), P. 349 - 358.

Google Scholar

[13] H.Z. Wang, L. Gao and J.K. Guo: J. Eur. Ceram. Soc. Vol. 19(1999), pp.2125-2131.

Google Scholar

[14] W. Li and L. Gao: J. Eur. Ceram. Soc. Vol. 20(2000), P. 2441 - 2445.

Google Scholar

[15] M. Yoshimura, T. Ohji, M. Sando and K. Niihara: J. Mater. Sci. Lett. Vol. 17(1998), pp.1389-1391.

Google Scholar

[16] M. Tokita: J. Am. Ceram. Soc. Vol. 85(2006), pp.32-34.

Google Scholar

[17] K. Chu, C.C. Jia and W.H. Tian: Composites Part A. Vol. 41(2010), pp.161-167.

Google Scholar

[18] Q. Jiang, J.C. Li and B.Q. Chi: Chem. Phys. Lett. Vol. 366(2002), pp.551-554.

Google Scholar

[19] L.F. Hu and C.A. Wang: Ceram. Int. Vol. 36 (2010), pp.1697-1701.

Google Scholar

[20] Z.K. Zhao , K.F. Yao and S.Z. Jin: Acta Metall. Sin. Vol. 41(2005), pp.1298-1302.

Google Scholar

[21] Y.C. Wang and Z.Y. Fu: Mater. Sci. Eng. B. Vol. 90 (2002), pp.34-37.

Google Scholar

[22] Z.K. Lu and H. Jin: Curr. Opin. Sol. Stat. Mater. Sci. Vol. 5(2001), pp.39-44.

Google Scholar

[23] Z. Zhao, V. Buscaglia and P. Bowen: Key Eng. Mater. Vol. 264-268(2004), pp.2297-2300.

Google Scholar