A Strategy to Produce Single and Double Layer Graphene Sheets

Article Preview

Abstract:

We report an easy and scaleable approach to produce single and double layer graphene (Gr)-sheet from re-exfoliation of expanded graphite (EG) with large area. Transmission and scanning electron microscopic observations show that the Gr-sheets have an area of ~ (12 x 10) μm2. Raman spectroscopy has confirmed the presence of single and double layer Gr-sheet with I2D/IG ratio as ~ 1.7. Scanning probe microscopy studies reveals that on re-exfoliation of EG, thickness of Gr-layer decreases from 6-7 nm to 0.8-1.1 nm. This infers that re-exfoliation overcomes the problem of insufficient oxidation or inadequate pressure buildup during heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1435-1439

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.

DOI: 10.1016/j.carbon.2010.01.058

Google Scholar

[3] S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galva, R.H. Baughman, Structure and dynamics of nanostrolls, Nano Lett. 4 (2004) 881-884.

DOI: 10.1021/nl0497272

Google Scholar

[4] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotech. 3 (2008) 101-105.

DOI: 10.1038/nnano.2007.451

Google Scholar

[5] Y. Si, E. T, Samulski, Synthesis of water soluble graphene, Nano Lett. 8 (2008) 1679-1682.

DOI: 10.1021/nl080604h

Google Scholar

[6] X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically Derived, Ultrasmooth graphene nanoribbon semiconductors, Science 319 (2008) 1229-1232.

DOI: 10.1126/science.1150878

Google Scholar

[7] S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate, J. Mater. Chem. 16 (2006) 155-158.

DOI: 10.1039/b512799h

Google Scholar

[8] S.R. Dhakate, S. Sharma, M. Borah, R.B. Mathur, T.L. Dhami, Inter, Expanded graphite based electrically conductive composites as bipolar plate for PEM fuel cell, J. Hydro. Ener. 33 (2008) 7146-7152.

DOI: 10.1016/j.ijhydene.2008.09.004

Google Scholar

[9] Z. Osvath, A.l. Darabont, P. Nemes-Incze, E. Horvath, Z.E. Horvath, L.P. Biro, Graphene layers from thermal oxidation of exfoliated graphite plates, Carbon 45 (2007) 3022-3026.

DOI: 10.1016/j.carbon.2007.09.033

Google Scholar

[10] J.L. Li, K.N. Kudin, M.J. McAllister, R.K. Prudhomme, I.A. Aksay, R. Car, Oxygen-driven unzipping of graphitic materials, Phys. Rev. Lett. 96 (2006) 176101(1–4).

DOI: 10.1103/physrevlett.96.176101

Google Scholar

[11] A.T.T. Koh, Y.M. Foong, D.H.C Chua, Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature, App. Phy. Lett. 97 (2010) 114102(1–3).

DOI: 10.1063/1.3489993

Google Scholar