Monodisperse Fe3O4/Fe Core/Shell Nanoparticles with Enhanced Magnetic Property

Article Preview

Abstract:

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

410-415

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. T.Hai, H. Kura, M. K. Takahashi, T. Ogawa, J. Colloid Interface Sci. Vol. 10 (2009), P. 1016

Google Scholar

[2] K. Raja, R. Moskowitz, J. Magn. Magn. Mater. Vol. 85 (1990), P. 233

Google Scholar

[3] L. Fu, V.P. Dravid, D. L. Johnson. Appl. Surf. Sci. Vol. 181 (2001), P. 173

Google Scholar

[4] P. Oswald, O. Clement, C. Chambon, E. Schouman-Claeys, C. Frija, Mag. Res. Imag. Vol. 15 (1997), P. 1025

Google Scholar

[5] G. Z. Li, X. Y. Li, W.C. Peng, X. B. Fan, G. L. Zhang, F. B. Zhang, Appl. Surf. Sci. Vol. 255 (2009), P. 7021

Google Scholar

[6] L. L. Li, Y. Chu, Y. Liu, D. Wang, J. Alloys. Compd. Vol. 472 (2009), P. 271

Google Scholar

[7] G. Kickelbick, L. M. Liz-Marzán, Encyclopedia of Nanoscience and Nanotechnology . H. S. Nalwa, American(2004).

Google Scholar

[8] Z. C. Xu, Y. L. Hou, and S. H. Sun, J. Am. Chem. Soc. Vol. 129 (2007), P. 8698

Google Scholar

[9] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, S. K. Fu, Colloids and Surf . A. Vol. 262 (2005), P. 87

Google Scholar

[10] J. J. Ge, T. Huynh, Y. X. Hu, Y. D. Yin, Nano Lett. Vol. 8 (2008), P. 931

Google Scholar

[11] Y. Ijiri, J. A. Borchers, R. W. Erwin, S.H. Lee, J. Appl. Phys. Vol. 83 (1998), P. 6882

Google Scholar

[12] P.J. van der Zaag , R.M. Wolf, A.R. Ball, C. Bordel , L.F. Feiner, R. Jungblut, J. Magn. Magn. Mater. Vol. 148 (1995), P. 346

Google Scholar

[13] Y. Ijiri, J. A. Borchers, R. W. Erwin, and S.H. Lee, Phys. Rev. Lett. Vol. 80 (1998), P. 608

Google Scholar

[14] H. Zeng, J. Li, Z.L, Wang, J.P. Liu, S. Sun, Nano Lett. Vol. 4 (2004), P. 187

Google Scholar

[15] L.D. Bianco, D. Fiorani, A.M. Testa, E. Bonetti, L. Savini, S. Signoretti, Phys. Rev. B. Vol. 66 (2002), P. 174418

Google Scholar

[16] P. Shah, M. Sohma, K. Kawaguchi, I.Yamaguchi, J. Magn. Magn. Mater. Vol. 15 (2002), P. 247

Google Scholar

[17] K. G. Sonh, S. W. Kang, S. Y. Ahn, M. W. Woo, S. K. Yang, Environ. Sci. Technol. Vol. 40 (2006), P. 5514

Google Scholar

[18] S. Peng, C. Wang, J. Xie, S. H. Sun, J. Am. Chem. Soc. Vol. 128 (2006), P. 10676

Google Scholar

[19] Z. H. Ai, L. R. Lu, J. P. Li, L. Z. Zhang, J. R. Qiu, M. H. Wu, J. Phys. Chem. C Vol. 111 (2007), P. 7430

Google Scholar

[20] S. L. Tie, H. C. Lee, Y. S. Baea, M. B. Kima, K. Lee, C. H. Lee, Colloids and Surf. A.Vol. 293 (2007), P. 278

Google Scholar