Detection of Fractional Data Based on Hilbert-Huang Transformation

Article Preview

Abstract:

In many theoretical analysis and engineering application fields, fractional Brownian motions has proposed to be a valuable random excitation due to its' key self-similarity and fractal nature. And Hilbert-Huang transformation is counted as an effective tool to deal with nonlinear and non-stationary data. In this paper, we propose Hilbert-Huang transformation to process fractional data, then by verifying and differentiating the marginal spectrum or power spectrum of fractional data we formulate a stochastic detection scheme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Pages:

1546-1550

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Biagini, Y. Hu, B. Øksendal and T. Zhang: Stochastic Calculus for Fractional Brownian Motion and Applications (Springer, 2008).

DOI: 10.1007/978-1-84628-797-8

Google Scholar

[2] J. P. Coeurjolly: Stat. Infer. for Stoch. Proc., Vol.4 (2001), pp.199-277.

Google Scholar

[3] M. Deriche and A. H. Tewfik: IEEE Trans. Signal Processing, Vol.41 (1993), pp.2977-2990.

Google Scholar

[4] J. Duan, C. Li and X. Wang: Interdisciplinary Math. Sci. , Vol.8 (2009), pp.119-130.

Google Scholar

[5] P. Flandrin: IEEE Trans. Inform. Theory, Vol.38 (1992), pp.910-917.

Google Scholar

[6] N. E. Huang and N. O. Attoh-Okine: The Hilbert Huang Transform in Engineering (Boca Raton, FL: CLC Press, 2005).

Google Scholar

[7] N. E. Huang, Z. Shen, S. R. Long, et al.: Proc. R. Soc. Lond. A, Vol. 454 (1998), pp.903-995.

Google Scholar

[8] N. E. Huang, M. C. Wu, S. R. Long, et al.: Proc. R. Soc. Lond. A, Vol. 459 (2003), pp.2317-2345.

Google Scholar

[9] X. C. Jin S. H. Ong, Jayasooriah: Pattern Recogn. Lett., Vol. 16 (1995), pp.457-464.

Google Scholar

[10] L. Li, D. Qi, J. Song and H. Mu: IEEE International Conference on Control and Automation, (2007), pp.2021-2026.

Google Scholar

[11] B. Mandelbrot: Gaussian Self-Affinity and Fractals (Berlin: Springer, 2001).

Google Scholar

[12] B. Mandelbrot and J. Van Ness: SIAM Rev. Vol. 10 (1968), pp.422-437.

Google Scholar

[13] D. Nualart: Contemporary Mathematics, Vol. 336 (2003), pp.3-39.

Google Scholar

[14] P. F. Pai, L. Huang, J. Hu and D. R. Langewisch: Structural Health Monitoring, Vol. 7 (2008), pp.103-127.

Google Scholar

[15] I. S. Reed, P. C. Lee and T. K. Truong: IEEE Trans. Inform. Theory, Vol.41 (1995), pp.1439-1451.

Google Scholar