Preparation and Biocompatibility of Nanoscaled La/Ag/HAP Powder

Article Preview

Abstract:

The lanthanum-silver doped hydroxyapatite (La/Ag/HAP) powder was prepared by a coprecipitation way. Its microstructure, phase composition and thermostability were investigated by means of X-Ray diffraction, scanning electron microscopy, and Fourier Transform Infrared. The antibacterial properties against E.coli and S.Aureus were detected using a minimum inhibitory concentration method. The biocompatibility was confirmed by cell culture of osteoblasts of rat cranium. Results show that the investigated La/Ag/HAP powder exhibited the features of typical HAP phase in the experimental temperature, and its shape was needle-like with a diameter of 50~80 nm and a length of 300~500 nm. It is of a good biocompatibility and is more stable at high temperature, and is also a stronger antibacterial agent than pure HAP powders.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Pages:

2173-2179

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. Fleming, C.N. Cornell and G.F. Muschler. Orthop. Clint. North Am., Vol. 31(3) (2000),p.357

Google Scholar

[2] S.N. Khan, Entomic and J.M. Lane. Orthop. Clin. North Am., Vol.31(3) (2000), p.389

Google Scholar

[3] J.M. Schierholz and J. Beuth. J. Hosp. Infect., Vol.49(2) (2001), p.87

Google Scholar

[4] X.D. Li, Y.Y. Hu, X.L. Li. J Fourth Mil Med Univ, Vol.20(1) (1999), p.59 ( in Chinese )

Google Scholar

[5] A.G. Gristina. Science, Vol.237(4822) (1987), p.1588

Google Scholar

[6] A.B. Lansdown. J. Wound Care, Vol.11(5) (2002), p.173

Google Scholar

[7] A.B. Lansdown, B. Sampson, P. Laupattarakasem, A. Vuttivirojana. J Dermatol, Vol.137(5) (1997), p.728

Google Scholar

[8] Q.L. Feng, F.Z. Cui, T.N. Kim. J.W. Kim, J. Mater. Sci. Lett., Vol.18(7) (1999), p.559

Google Scholar

[9] F.N. Oktar, S. Ozyegin, O. Meydanoglu, H. Aydin, S. Agathopoulos, G. Rocha, B. Sennaroglu, S. Kayali. Key Eng. Mater., Vol.18 (2006), p.101

DOI: 10.4028/www.scientific.net/kem.309-311.101

Google Scholar

[10] T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, E.B. Slamovich. Biomaterials, Vol.25(11) (2004), p.2111

Google Scholar

[11] G.D. Zhou, in Inorganic chemistry series, ed by Science ( Beijing, China, 30(11),1982) (in Chinese)

Google Scholar

[12] A. Grandjean-Laquerriere, P. Laquerriere, M. Guenounou, D. Laurent-Maquin, T.M. Phillips. Biomaterials, Vol.26(15) (2005), p.2361

DOI: 10.1016/j.biomaterials.2004.07.036

Google Scholar

[13] H.Q. Tang, T. Liu, X. Liu, H.Q. Gu, J. Zhao. Nucl. Instr. and Meth. B, Vol.255(2) (2007). p.304

Google Scholar

[14] L.F. Espinosa-Cristóbal, G.A. Martínez-Castañón, R.E. Martínez-Martínez, J.P. Loyola- Rodríguez, N. Patiño-Marín, J.F. Reyes-Macías, Facundo Ruiz. Materials Letters, Vol. 63 (2009), p.2603

DOI: 10.1016/j.matlet.2009.09.018

Google Scholar

[15] K.A. Bhadang, C.A. Holding, H. Thissen, K.M. McLean, J.S. Forsythe , D.R. Haynes. Acta Biomaterialia, Vol.6 (2010), p.1575

DOI: 10.1016/j.actbio.2009.10.029

Google Scholar