Self-Assembly of Flower-Like CeO2 Microspheres via a Template-Free Synthetic Approach and its Use as Support in Enhanced CO and Benzene Oxidation Activity

Article Preview

Abstract:

This work reported that porous flower-like CeO2 microspheres have been successfully synthesized via a controlled template-free precipitation method and were used as catalyst support for the oxidation of CO and benzene. The scanning electron microscopy results showed that ceric concentration has great influence on the morphology of CeO2 micro and nanostructures. This flower-like CeO2 microstructure exhibited a superior low-temperature catalytic activity used as catalyst support compared with conventional CeO2 nanoparticles. The enhanced catalytic activity of flower-like CeO2 microspheres could be attributed to its porous structure and the abundant oxygen vacancies on the surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Pages:

656-661

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Trovarelli: Catal. Rev. Sci. Eng. Vol. 38 (1996), p.439

Google Scholar

[2] R. Si and M. Flytzani-Stephanopoulos: Angew. Chem. Int. Ed. Vol. 47 (2008), p.2884

Google Scholar

[3] S.D. Park, J.M. Vohs and R.J. Gorte: Nature Vol. 404 (2000), p.265

Google Scholar

[4] P. Jasinski, T. Suzuki and H.U. Anderson: Sens. Actuators B Vol. 95 (2003), p.73

Google Scholar

[5] Z.L. Zhan and S.A. Barnett: Science Vol. 308 (2005), p.844

Google Scholar

[6] D.M. Lyons, J.P. McGrath and M.A. Morris: J. Phys. Chem. B Vol. 107 (2003), p.4607

Google Scholar

[7] K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li: J. Catal. Vol. 229 (2005), p.206

Google Scholar

[8] R. Si and M. Flytzani-Stephanopoulos: Angew. Chem. Int. Ed. Vol. 47 (2008), p.1

Google Scholar

[9] X. Wang and Y.D. Li: Angew. Chem. Int. Ed. Vol. 41 (2002), p.4790

Google Scholar

[10] Y.L. Zhang, Z.T. Kang, J. Dong, H. Abernathy and M.L. Liu: J. Solid State Chem. Vol. 179 (2006), p.1733

Google Scholar

[11] C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li and L.Q. Chen: J. Phys. Chem. B Vol. 110 (2006), p.13445

Google Scholar

[12] R. Srivastava: J. Colloid Interface Sci. Vol. 348 (2010), p.600

Google Scholar

[13] H.F. Li, G.Z. Lu, Y.Q. Wang, Y. Guo and Y.L. Guo: Catal. Commun. Vol. 11 (2010), p.946

Google Scholar

[14] H.J. Wu, L.D. Wang, J.Q. Zhang, Z.Y. Shen and J.H. Zhao: Catal. Commun. Vol. 12 (2011), p.859

Google Scholar

[15] C.W. Sun, H. Li and L.Q. Chen: J. Phys. Chem. Solids Vol. 68 (2007), p.1785

Google Scholar

[16] S.Y. Lai, Y.F. Qiu and S.J. Wang: J. Catal. Vol. 237 (2006), p.303

Google Scholar

[17] Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos: Science Vol. 301 (2003), p.935

Google Scholar

[18] Z.P. Liu, S.J. Jenkins and D.A. King: Phy. Rev. Lett. Vol. 94 (2005), p.196102

Google Scholar