Preparation and Characterization of Copper Oxide and Copper Nanoparticles

Article Preview

Abstract:

Copper oxide was prepared via the calcination of copper oxalate precursor. By using high-temperature solvent method, the precursor decomposed under nitrogen atmosphere and copper nanoparticles were obtained. The microstructure and properties of the products were characterized by scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy and other analysis methods. The results show that the obtained copper oxide is constructed by nanoparticles. The sample is porous and has a good catalytic activity. Three copper samples were obtained by controlling the reaction time. The particle size of the samples was calculated to be about 44.3 nm, 17.1 nm and 9.9 nm respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Pages:

715-721

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Pamela, B. Kaste: Amptiac Newsl Vol. 4 (2004), p.85.

Google Scholar

[2] S.F. Son, J.R. Busse, B.W. Asay, P.D. Peterson, J.T. Mang, B. Bockmon and M.L. Pantoya: The 29th IPS, 2002, 7.

Google Scholar

[3] Mingfeng Luo, Lixia Li and Yi Yang: Micro Technol Vol. 05 (2010), p.297.(In Chinese)

Google Scholar

[4] Xiaojun Zhang, Dongen Zhang, Xiaomin Ni and Huagui Zheng: Solid. State. Electron Vol. 2 (2008), p.245.

Google Scholar

[5] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar and P.K. Patanjali: Appl. Phys. Lett Vol. (84) (2004), p.1180.

DOI: 10.1063/1.1646760

Google Scholar

[6] Kebin Zhou, Ruipu Wang, Boqing Xu and Yadong Li: Nanotechnology Vol. 15 (2006), p.3939.

Google Scholar

[7] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang and Y.D. Li: Chem. Mater Vol. 4 (2006), p.867.

Google Scholar

[8] M.H. Cao, C.W. Hu and Y.H. Wang: Chem. Commun Vol. 15 (2003), p.1884.

Google Scholar

[9] Y. Chang, H. C. Zeng: Cryst. Growth. Des Vol. 2 (4) (2004), p.397.

Google Scholar

[10] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song: J. Phys. Chem. B Vol. 18 (108) (2004), p.5547.

Google Scholar

[11] X.G. Wen, W.X. Zhang and S.H. Yang: Langmuir Vol. 14 (19) (2003), p.5898.

Google Scholar

[12] H.W. Hou, Y. Xie and Q. Li: Cryst. Growth. Des Vol. 1 (5) (2005), p.201.

Google Scholar

[13] X.C. Jiang, T. Herricks and Y.N. Xia: Nano. Lett Vol. 12 (2) (2002), p.1333.

Google Scholar

[14] Y.Y. Xu, D.R. Chen and X.L. Jiao: J. Phys Chem. B Vol. 28 (109) (2005), p.13561.

Google Scholar

[15] B. Liu, H.C. Zeng: J. Am. Chem. Soc Vol. 26 (126) (2004), p.8124.

Google Scholar

[16] T. Miao, L. Wang: Tetrahedron. Lett Vol. 48 (2007), p.95.

Google Scholar

[17] M. Kidwai, N.K. Mishra and V. Bansal: Tetrahedron. Lett Vol. 48 (2007), p.8883.

Google Scholar

[18] Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong and Y.S. Kang: Colloids. Surf. A-phys. Eng Asp Vol. 284 (2006), p.364.

Google Scholar

[19] M. Salavati-Niasari, F. Davar and N. Mir: POLYHEDRON Vol. 17 (27) (2008), p.3514.

DOI: 10.1016/j.poly.2008.08.020

Google Scholar

[20] Xiaowang Liu, Baoyou Geng, Qingbo Du, Jinzhu Ma and Xiangming Liu: Mater. Sci. Eng. A Vol. 1-2 (448) (2008), p.7.

Google Scholar

[21] S.S. Hayrapetyan, H.G. Khachatryan: Micro. Mesop. Mater Vol. 1-3 (89) (2006), p.33.

Google Scholar

[22] Wenliang Wang, Dongsheng Li, Zhenping Qin, Kefen Yue and Wenxuan Yang: Chinese J. Catal Vol. 03 (2001), p.301.(In Chinese)

Google Scholar

[23] S.H. Yu, H.J. Colfen: Mater. Chem Vol. 14 (2004), p.2124.

Google Scholar

[24] Zhigang Jia, Linhai Yue, Yifan Zheng and Zhude Xu: Chinese J. Inorg. Chem Vol. 07 (2007), p.1277.(In Chinese)

Google Scholar