Microstructure and Mechanical Properties of as-Forged Ti-47Al-2Cr-2Nb-Y Alloy

Article Preview

Abstract:

Ti-47Al-2Cr-2Nb-Y alloy pancake were produced by hot-pack forging. The microstructure of as-forged Ti-47Al-2Cr-2Nb-Y alloy were investigated by optical microscopy and scanning electron microscopy, showing that the forged alloy was composed of fine γ grains and retain cast lamella colonies surrounded by elongated B2 phase. Tensile properties of the material showed that yield strength (YS) and ultimate tensile strength (UTS) were decreased from 500MPa and 612MPa at room temperature to 420 MPa and 462 MPa at 800°C, respectively. With the temperature increasing to 900°C, elongation reached 120%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1873-1878

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.D. Fischer, L. Cha, G. Dehm and H. Clemens: Intermetallics Vol.18 (2010), p.972

Google Scholar

[2] T. Schmoelzer, K.-D. Liss, G.A. Zickler, I.J. Watson, L.M. Droessler, W. Wallgram, T. Buslaps, A. Studer and H. Clemens: Intermetallics Vol.18 (2010), p.1544

DOI: 10.1016/j.intermet.2010.04.008

Google Scholar

[3] X. Wu: Intermetallics Vol.14 (2006), p.1114

Google Scholar

[4] M. Yamaguchi, H. Inui and K. Ito: Acta. Mater. Vol.48 (2000), p.307

Google Scholar

[5] M.A. Morris and M. Leboeuf: Mat. Sci. Eng. A Vol.239-240 (1997), p.429

Google Scholar

[6] R.M. Imayev, G.A. Salishchev, O.N. Senkov, V.M. Imayev, M.R. Shagiev, N.K. Gabdullin, A.V. Kuznetsov and F.H. Froes: Mat. Sci. Eng. A Vol.300 (2001), p.263

DOI: 10.1016/s0921-5093(00)01813-x

Google Scholar

[7] X.J. Xu, J.P. Lin, Y.L. Wang, Z. Lin and G.L. Chen: Mat. Sci. Eng. A Vol.416 (2006), p.98

Google Scholar

[8] T. Tetsui: Intermetallics Vol.11 (2003), p.299

Google Scholar

[9] T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi and M. Takeyama: Intermetallics Vol.13 (2005), p.971

DOI: 10.1016/j.intermet.2004.12.012

Google Scholar

[10] S.L. Semiatin, V. Seetharaman and I. Weiss: Mat. Sci. Eng. A Vol.243 (1998), p.1

Google Scholar

[11] Y. Kim: Journal of Metals; (USA) Vol.41 (1989), p.24

Google Scholar

[12] Y.Y. Chen, B.H. Li and F.T. Tao: J. Alloy. Compd. Vol.457 (2008), p.265

Google Scholar

[13] B.H. Li, Y.Y. Chen, Z.Q. Hou and F.T. Kong: J. Alloy. Compd. Vol.473 (2009), p.123

Google Scholar

[14] Fantao Kong, Yuyong Chen, Wei Wang, Zhiguang Liu and S. Xiao: T. Nonferr. Metal. Soc. Vol.19 (2009), p.1126

Google Scholar

[15] H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerling, K.D. Liss, S. Kremmer, V. Güther and W. Smarsly: Intermetallics Vol.16 (2008), p.827

DOI: 10.1016/j.intermet.2008.03.008

Google Scholar

[16] F. Appel, M. Oehring, J.D.H. Paul, C. Klinkenberg and T. Carneiro: Intermetallics Vol.12 (2004), p.791

DOI: 10.1016/j.intermet.2004.02.042

Google Scholar

[17] J. Kumpfert, Y.W. Kim and D.M. Dimiduk: Mat. Sci. Eng. A Vol.192-193 (1995), p.465

Google Scholar

[18] C. Zhang and K. Zhang: Mat. Sci. Eng. A Vol.520 (2009), p.101

Google Scholar

[19] R. Imayev, V. Imayev and G. Salishchev: Scr. Metall. Vol.29 (1993), p.713

Google Scholar

[20] V.M. Imayev, R.M. Imayev, G.A. Salishchev, K.B. Povarova, M.R. Shagiev and A.V. Kuznetsov: Scripta. Mater. Vol.36 (1997), p.891

DOI: 10.1016/s1359-6462(98)00419-9

Google Scholar

[21] V. Seetharaman and S.L. Semiatin: Mat. Sci. Eng. A-struct Vol.299 (2001), p.195

Google Scholar

[22] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto and A. Bartels: Adv. Eng. Mater. Vol.10 (2008), p.707

DOI: 10.1002/adem.200800164

Google Scholar