Understanding the Enhancement of Coating's Thermal Cracking Resistance by Multiple Segmentation

Article Preview

Abstract:

In this paper, the thermal shock induced cracking behavior of a segmented coating on the outer surface of a hollow cylinder has been investigated. The driving force for the propagation of multiple segmentation crack, represented by the Thermal Stress Intensity Factor (TSIF), was determined by combination of the principle of superposition and the finite element method. The maximum TSIF has been shown to occur neither at the beginning nor at the steady state of thermal transients, but at an intermediate instant. As the spacing between multiple segmentation cracks decreases, the magnitude of TSIF first plateaus, and then decreases sharply. This quantitative mechanistic result rationalizes the experimental observations that a segmented coating can exhibit much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. Some other parameters affecting TSIF, such as segmentation crack depth and convection severity, were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 314-316)

Pages:

223-230

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Hutchinson, Z. Suo, ASME Adv. Appl. Mech. 29 (1992) p.63

Google Scholar

[2] H.H. Yu, M.Y. He, J.W. Hutchinson, Acta Mater. 49 (2001) p.93

Google Scholar

[3] H.F. Nied, Eng. Fract. Mech. 20 (1984) p.113

Google Scholar

[4] R. Tang, F. Erdogan, ASME J. Eng. Gas. Turb. Power 107 (1985) p.212

Google Scholar

[5] F. Erdogan, A.A. Rizk, Int. J. Fract. 53 (1992) p.159

Google Scholar

[6] C.K. Chen, B.L. Kuo, Eng. Fract. Mech. 49 (1994) p.381.

Google Scholar

[7] X. Chen, K. Zhang, G. Chen, G. Luo, Int. J. Solids Struct. 43 (2006) p.6424

Google Scholar

[8] A.A. Rizk, Theor. Appl. Fract. Mech. 49 (2008) p.251

Google Scholar

[9] J. Yan, T. Leist, M. Bartsch, A.M. Karlsson, Acta Mater. 56 (2008) p.4080

Google Scholar

[10] J.H. Kim, M.C. Kim, C.G. Park, Surf. Coat. Technol. 168 (2003) p.275

Google Scholar

[11] J.L. He, K.C. Chen, Surf. Coat. Technol. 200 (2005) p.1464

Google Scholar

[12] Y.Z. Tsai, J.G. Duh, Surf. Coat. Technol. 200 (2005) p.1683

Google Scholar

[13] Y. Hu, K. Zhang, G.N. Chen, C.W. Wu, J. Metal Treatment (Suppl.) 30 (2005) p.161(in Chinese)

Google Scholar

[14] K. Zhang, C.W. Wu, Y. Hu, G.N. Chen, Solid State Phenomena 118 (2006) p.243.

Google Scholar

[15] G.N. Chen, G.X. Luo, K Zhang, X.Y. Xu, H. Shen, H.M. Yan, D.S. Rao, Acta Armament (Suppl.) 24 (2003) p.6. (in Chinese)

Google Scholar

[16] B. Zhou, K. Kokini, Surf. Coat. Technol. 187 (2004) p.17

Google Scholar

[17] B. Zhou, K. Kokiki, Acta Mater, 52 (2004) p.4189

Google Scholar

[18] H.B. Guo, R. Vaben, D. Stover, Surf. Coat. Technol. 186 (2004) p.353

Google Scholar

[19] H.B. Guo, S. Kuroda, H. Murakami, Thin Solid Films, 506-507 (2006) p.136

Google Scholar

[20] E. Sternberg, J.G. Chakravorty, ASME J. Appl. Mech. 26 (1959) p.503

Google Scholar

[21] T. Atarashi, S. Minagawa, Int. J. Eng. Sci. 30 (1992) p.1543

Google Scholar

[22] H.S.. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University, Oxford, (1986)

Google Scholar

[23] Ansys: Guidance to structural analysis (V.0205), Ansys Inc., (2000)

Google Scholar

[24] P.P. Lynn, A.R. Ingraffea, Int. J. Num. Methods Eng. 12 (1978) p.1031

Google Scholar

[25] D.P. Rooke, F.I. Baratta, D.J. Cartwright, Eng. Fract. Mech. 14 (1981) p.397

Google Scholar

[26] G.W. Schulze, F. Erdogan, Int. J. Solids Struct. 35 (1998) p.3615

Google Scholar

[27] A.P. Parker, Eng. Fract. Mech. 62 (1999) p.577

Google Scholar