Microstructure and Wear Behavior of SiCP-Reinforced Magnesium Matrix Composite by Cold Spraying

Article Preview

Abstract:

In this paper, dense AZ91D/SiC composite coatings were fabricated by cold spraying. The microstructure and microhardness of the as-sprayed coatings were investigated. The results show that the content of SiC particles in the composite coating was 23.6 ± 7.5 vol.%. The microhardness of the composite coating was improved to 140 HV0.3 due to the enhancement of SiC particles, compared to 98 HV0.3 for the pure AZ91D coating. The wear behavior of the composite coating in an ambient condition was studied through a ball-on-disc dry sliding test system. The composite coating showed higher friction coefficient and lower wear rate than the pure AZ91D coating. The wear mechanism of the composite coating was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 314-316)

Pages:

253-258

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Wu, M. Zheng, M. Zhao, C. Yao and J. Li: Scr. Mater. Vol. 35 (1996), p.529

Google Scholar

[2] J.E. Gray and B. Luan: J. Alloy. Compd. Vol. 336 (2002), p.88

Google Scholar

[3] S.F. Hassan and M. Gupta: J. Alloy. Compd. Vol. 335 (2002), p. L10

Google Scholar

[4] Q. Dong, L.Q. Chen, M.J. Zhao and J. Bi: Mater. Lett. Vol. 58 (2004), p.920

Google Scholar

[5] E. Neubauer, M. Kitzmantel, M. Hulman and P. Angerer: Compos. Sci. Technol. Vol. 70 (2010), p.2228

Google Scholar

[6] H. Lianxi and W. Erde: Mater. Sci. Eng. A Vol. 278 (2000), p.267

Google Scholar

[7] M.Y. Zheng, K. Wu, S. Kamado and Y. Kojima: Mater. Sci. Eng. A Vol. 348 (2003), p.67

Google Scholar

[8] Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, and P. Lukáč: Compos. Sci. Technol. Vol. 69 (2009), p.2256

DOI: 10.1016/j.compscitech.2009.06.016

Google Scholar

[9] Y. Cai, D. Taplin, M.J. Tan and W. Zhou : Scr. Mater. Vol. 41 (1999), p.967

Google Scholar

[10] R.A. Saravanan and M.K. Surappa : Mater. Sci. Eng. A Vol. 276 (2000), p.108

Google Scholar

[11] C.Y.H. Lim, S.C. Lim and M. Gupta: Wear Vol. 255 (2003), p.629

Google Scholar

[12] H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma and F. Zhao: Mater. Lett. Vol. 58 (2004), p.3509

Google Scholar

[13] K.F. Ho, M. Gupta and T.S. Srivatsan: Mater. Sci. Eng. A Vol. 369 (2004), p.302

Google Scholar

[14] T. Ebert, F. Moll and K.U. Kainer: Powder Metall. Vol. 40 (1997), p.126

Google Scholar

[15] C.Y. Chen and C.Y.A. Tsao: Mater. Sci. Eng. A Vol. 383 (2004), p.21

Google Scholar

[16] T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, et al: Surf. Coat. Technol. Vol. 111 (1999), p.62

Google Scholar

[17] S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, et al: J. Therm. Spray Technol. Vol. 18 (2009), p.331

DOI: 10.1007/s11666-009-9327-0

Google Scholar

[18] C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi and S.P. Ringer: Surf. Coat. Technol. Vol. 204 (2010), p.3739

Google Scholar

[19] E. Sansoucy, P. Marcoux, L. Ajdelsztajn and B. Jodoin: Surf. Coat. Technol. Vol. 202 (2008), p.3988

Google Scholar

[20] S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal and A. Agarwal: Surf. Coat. Technol. Vol. 202 (2008), p.5162

Google Scholar

[21] M. Yandouzi, E. Sansoucy, L. Ajdelsztajn and B. Jodoin: Surf. Coat. Technol. Vol. 202 (2007), p.382

Google Scholar

[22] A. Sova, V.F. Kosarev, A. Papyrin and I. Smurov: J. Therm. Spray Technol. Vol. 20 (2011), p.285

Google Scholar

[23] W.Y. Li, G. Zhang, C. Zhang, O. Elkedim, H. Liao and C. Coddet: J. Therm. Spray Technol. Vol. 17 (2008), p.316

Google Scholar

[24] H.J. Kim, C.H. Lee and S.Y. Hwang: Mater. Sci. Eng. A Vol. 391 (2005), p.243

Google Scholar

[25] P.B. Srinivasan, C. Blawert and W. Dietzel: Wear Vol. 266 (2009), p.1241

Google Scholar

[26] G. Faraji and P. Asadi: Mater. Sci. Eng. A Vol. 528 (2011), p.2431

Google Scholar