A New Single Step Full Discrete Scheme for a Semilinear Second Order Hyperbolic Equation

Article Preview

Abstract:

In this paper, we study a simplified single step full discrete scheme for a class of semilinear hyperbolic problems of second order. At first we obtain a system of second ordinary differential equations with initial value by use of spatially discrete finite element approximation with interpolated coefficients. Next in terms of a single step scheme to the time variable for this system we gain a fully discrete scheme with high accuracy. Finally we give the stable and convergence of the full discrete schemes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 314-316)

Pages:

667-671

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Baker, V.A. Dougalis and O. Karakashian: Nonlinear Anal. Vol.4 (1980), p.579.

Google Scholar

[2] L.A. Bales: Math. Comp. Vol.43 (1984), p.383.

Google Scholar

[3] L.A. Bales: SIAM J. Numer. Anal., Vol.23 (1986), p.27.

Google Scholar

[4] L.A. Bales: Comput. Math. Appl. Vol.15 (1988), p.535.

Google Scholar

[5] L.A. Bales and V.A. Dougalis: Math. Comp. Vol.52 (1989),p.299.

Google Scholar

[6] C.M. Chen: Structure theory of superconvergence of finite elements(Hunan Sci. and Tech. Publishers, Changsha 2001) (in Chinese).

Google Scholar

[7] C.M. Chen, S. Larson and N.Y. Zhang: IMA J. Numer. Ana. Vol.9 (1989), p.507.

Google Scholar

[8] S. Larson, V. Tomee and N.Y. Zhang: Math. Methods Appl. Sci. Vol.11 (1989), p.105.

Google Scholar

[9] D. Lei and C.M. Chen: Nat. Sci. J. of Xiangtan Uni. Vol. 22 (2000), p.15.19 (in Chinese).

Google Scholar

[10] T.R. Li and C.M. Chen: Acta Math. Sci., Ser. A, Vol.23 (2003), p.379 (In Chinese).

Google Scholar

[11] Q. Lin, H. Wang and T. Lin: Syst. Sci. Math. Scis., Vol.4 (1993), p.331.

Google Scholar

[12] H.Wang: Northeastern Mathematical Journal, Vol.2 (1986), p.205.

Google Scholar

[13] Z.G. Xiong and C.M. Chen: Acta Math. Sci., Ser. A, Vol.26 (2006), p.174(In Chinese).

Google Scholar

[14] Z.G. Xiong and C.M. Chen: Appl. Math. Comput., Vol.181 (2006), p.1577.

Google Scholar

[15] Z.G. Xiong, Y.P. Chen and Y. Zhang: J. Comput. Appl. Math., Vol.214 (1) (2008), p.313.

Google Scholar

[16] M. Zlamal: RAIRO Anal. Numer., Vol.14 (1980), p.203.

Google Scholar