Investigation on Sub-Rapid Solidification Behavior of Semi-Solid Magnesium Alloy Metal

Article Preview

Abstract:

In order to investigate sub-rapid solidification behavior of semi-solid magnesium alloy metal, a novel semi-solid processing technique, called new vacuum suction casting (NVSC), is used to manufacture thin castings of AZ91D Mg-alloy directly from a liquid metal. The resulting microstructures of castings are characterized in detail and linked to the solidification behavior. In the microstructure of the sub-rapidly solidified SSM sheet, the “preexisting” primary solid particles, with the morphology of near-globules or rosettes, disperse in the homogeneous matrix consisting of fine near-equiaxed secondary α-Mg grains and fine precipitates of β-Mg17Al12 intermetallics. Owing to rapid solidification rate, the volume fraction of the β phase in the sub-rapidly solidified SSM sheets is much lower than that in the as-cast ingot. In addition, the content of alloying elements of Al and Zn was higher in the grain boundaries and the eutectic structure than that in the primary solid particles and in the second α-grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-162

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.L. Mordike and T. Ebert: Mater. Sci. Eng. A Vol. 302 (2001), p.37.

Google Scholar

[2] R. Ambat, N.N. Aung and W. Zhou: Corros. Sci. Vol. 42 (2000), p.1433.

Google Scholar

[3] T.S. Srivatsan, S. Vasudevan and M. Petraroli: J. Alloys Compd. Vol. 461 (2008), p.154.

Google Scholar

[4] H. Friedrich and S. Schumann: J. Mater. Process. Technol. Vol. 117 (2001), p.276.

Google Scholar

[5] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer and D.H. StJohn: J. Light Met. Vol. 1 (2001), p.61.

Google Scholar

[6] M. Vogel, O. Kraft, G. Dehm and E. Arzt: Scr. Mater. Vol. 45 (2001), p.517.

Google Scholar

[7] D.H. Kirkwood: Int. Mater. Rev. Vol. 39 (1994), p.173.

Google Scholar

[8] M.C. Flemings: Metall. Mater. Trans. A Vol. 22 (1991), p.957.

Google Scholar

[9] Z. Fan: Int. Mater. Rev. Vol. 47 (2002), p.49.

Google Scholar

[10] F. Czerwinski: Acta Mater. Vol. 50 (2002), p.3267.

Google Scholar

[11] H. Okamoto: J. Phase Equilib. Vol. 19 (1998), p.598.

Google Scholar

[12] E.H. Friefrich and B.L. Mordike, Magnesium Technology (Springer, Berlin, 2006).

Google Scholar

[13] Z. Fan and G. Liu: Acta Mater. Vol. 53 (2005), p.4345.

Google Scholar

[14] S. Ji, Z. Fan and M.J. Bevis: Mater. Sci. Eng. A Vol. 299 (2001), p.210.

Google Scholar

[15] F. Czerwinski, A. Zielinska-Lipiec, P.J. Pinet and J. Overbeeke: Acta Mater. Vol. 49 (2001), p.1225.

DOI: 10.1016/s1359-6454(01)00015-5

Google Scholar

[16] X. Zhang, T. Li, H. Teng, S. Xie and J. Jin: Mater. Sci. Eng. A Vol. 475 (2008), p.194.

Google Scholar

[17] Z. Fan: Mater. Sci. Eng., A Vol. 413-414 (2005), p.72.

Google Scholar

[18] M. Madadlou and F. Ajersch: Mater. Sci. Eng., A Vol. 212 (1996), p.157.

Google Scholar

[19] G. Song, A. Atrens and M. Dargusch: Corros. Sci. Vol. 41 (1999), p.249.

Google Scholar

[20] J. Cai, G.C. Ma, Z. Liu, H.F. Zhang and Z.Q. Hu: J. Alloys Compd. Vol. 422 (2006), p.92.

Google Scholar

[21] A.M. Mullis: Acta Mater. Vol. 47 (1999), p.1783.

Google Scholar

[22] F. Czerwinski: Acta Mater. Vol. 53 (2005), p. (1973).

Google Scholar