Increase Characteristics of Local Wall Thickness of a Pipe during Die Forming

Abstract:

Article Preview

In recent years global warming has become a worldwide problem. Reduction of carbon dioxide emissions is one of the most important issues also in the automobile industry. This weight reduction technology is important even if applied to electric vehicles rather than gasoline vehicles, as reduction of energy consumption is an important issue. Plastic processing of hollow pipes is an important technology for realizing weight reduction of automobile components. As an example of research into pipe forming there is the research by Ohashi et al. [1-2], who have carried out processing to enlarge pipe diameters using a lost core, which achieved suppressing reduction in wall thickness and greater pipe expansion than hydroforming. In this research, a method of increasing the wall thickness of pipe by press forming was investigated. The establishment of technology for controlling the wall thickness of pipe without buckling the pipe is an important technology for weight reduction of products. Using the finite element analysis method it was predicted that it is possible to increase the wall thickness of aluminum pipe with 2mm wall thickness by approximately 20% by hollow pipe press forming. Also, it was predicted that it is possible to increase the wall thickness by approximately 30% in places by eccentric pipe wall thickness increase. Also, the effect of the metal die which has a large effect on processing a pipe from a circular cylindrical shape to a rectangular tube shape was investigated.

Info:

Periodical:

Edited by:

Jun Hu and Qi Luo

Pages:

456-461

DOI:

10.4028/www.scientific.net/AMR.320.456

Citation:

Y. Kotani et al., "Increase Characteristics of Local Wall Thickness of a Pipe during Die Forming", Advanced Materials Research, Vol. 320, pp. 456-461, 2011

Online since:

August 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.