A Method of Parameters Selecting in Robust Control Based on PSO Algorithm

Article Preview

Abstract:

Aiming at a kind of uncertainties of models in complex industry processes, a novel method for selecting robust parameters is stated in the paper. Based on the analysis, parameters selecting for robust control is reduced to be an object optimization problem, and the particle swarm optimization (PSO) is used for solving the problem, and the corresponding robust parameters are obtained. Simulation results show that the robust parameters designed by this method have good robustness and satisfactory performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

574-579

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Lin. An optimal control approach to robust control design[J]. International Journal of Control, 2000, 73(3): 177-186.

Google Scholar

[2] Eberhart R., Shi Y. Particle Swarm Optimization, developments, applications and resources[A]. Proceedings of the IEEE Congress on Evolutionary Computation[C]. Piscataway: IEEE Press, 2001. 81-86.

DOI: 10.1109/cec.2001.934374

Google Scholar

[3] Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proceedings of IEEE International Conference on Evolutionary Computation[C]. Anchorage: IEEE Press, 1998. 69-73.

DOI: 10.1109/icec.1998.699146

Google Scholar

[4] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proceedings of the 6th International Symposium on Micro Machine and Human Science[C]. Nagoya: IEEE Press, 1995. 39-43.

DOI: 10.1109/mhs.1995.494215

Google Scholar

[5] Shi Yuhui, Eberhart R. Parameter selection in particle swarm optimization[A]. Proceedings of the 7th Annual Conference On Evolutionary Programming[C]. Washington: IEEE Press, 1998. 591-600.

DOI: 10.1007/bfb0040810

Google Scholar

[6] Shi Yuhui, Eberhart R. Empirical study of particle swarm optimization[A]. Proceedings of the Congress on Evolutionary Computation[C], Washington: IEEE Press, 1998. 1945-(1950).

DOI: 10.1109/cec.2001.934377

Google Scholar

[7] Xie Xiaofeng, Zhang Wenjun, Yang Zhilian. Overview of particle swarm optimization[J]. Control and Decision, Shenyang, 2003, 18(2): 129-134.

Google Scholar

[8] Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, (1994).

Google Scholar

[9] Kennedy J, Eberhart R, Shi Yuhui. Swarm intelligence[M]. San Francisco: Morgan Kaufmann, (2001).

Google Scholar

[10] Shi Yuhui, Krohling R K. Co-evolutionary particle swarm optimization[A]. Proceedings of the 2002 Congress on Evolutionary Computation[C]. Hawai: IEEE Press, 2002. 1682 -1687.

DOI: 10.1109/cec.2002.1004495

Google Scholar

[11] N. B. Almutairi. Adaptive fuzzy modulation for networked PI control System. USA: North Carolina State University, (2002).

Google Scholar