[1]
L. Cohen, Time-frequency analysis, Prentice-Hall, Englewood Cliffs, NJ, (1995).
Google Scholar
[2]
J. Lin and L. Qu, Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis, Journal of Sound and Vibration, Vol. 234, pp.135-148, (2000).
DOI: 10.1006/jsvi.2000.2864
Google Scholar
[3]
W.J. Staszewski, Wavelet based compression and feature selection for vibration analysis, Journal of Sound and Vibration, Vol. 211, pp.736-760, (2000).
DOI: 10.1006/jsvi.1997.1380
Google Scholar
[4]
C. James Li and Jun Ma, Wavelet decomposition of vibration for detection of bearing-localized defects, NDT&E International, Vol. 30, pp.143-149, (1997).
DOI: 10.1016/s0963-8695(96)00052-7
Google Scholar
[5]
S. Prabhakar, A.R. Mohanty and A. S Sekhar, Application of discrete wavelet transform for detection of ball bearing race fault, Tribology International, Vol. 3, pp.793-800, (2002).
DOI: 10.1016/s0301-679x(02)00063-4
Google Scholar
[6]
W.J. Wang and P.D. Mcfadden, Application of orthogonal wavelet to early gear damage detection, Mechanical Systems and Signal Processing, Vol. 9, pp.497-507, (1995).
DOI: 10.1006/mssp.1995.0038
Google Scholar
[7]
W.J. Staszewski, K. Worden and G.R. Tomlinson, The-frequency analysis in gearbox fault detection using the Wigner-Ville distribution and pattern recognition, Mechanical Systems and Signal Processin, Vol. 11, pp.673-692, (1997).
DOI: 10.1006/mssp.1997.0102
Google Scholar
[8]
L. Galleani and L. Cohen, The Wigner distribution for classical system, Physics Letters A , Vol. pp.149-155, (2002).
Google Scholar
[9]
G. Matz and F. Hlawatsch, Wigner distribution (nearly) everywhere: time-frequency analysis of signals, systems, random process, signal spaces, and frames, Signal Processing, Vol. 83, pp.1355-1378, (2003).
DOI: 10.1016/s0165-1684(03)00086-0
Google Scholar
[10]
F. Hlawatsch and W. Kozek, The Wigner distribution of a linear signal space, IEEE transaction on signal process, Vol. 41 , pp.1248-1258, (1993).
DOI: 10.1109/78.205727
Google Scholar
[11]
N . E Huang, Z. Shen and S.R. Long et al, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceeding of Royal Society London, Series A Vol. 454, pp.903-995, (1998).
DOI: 10.1098/rspa.1998.0193
Google Scholar
[12]
N.E. Huang, Z. Shen, S.R. Long. A new view of nonlinear water waves: The Hilbert spectrum, , Annual Review of Fluid Mechanics, Vol. 31, pp.417-457, (1999).
DOI: 10.1146/annurev.fluid.31.1.417
Google Scholar