Numerical Simulation of Creep-Fatigue Crack Growth for Nickel-Based Super Alloy with Extended Finite Element Method

Article Preview

Abstract:

Extended finite element method is widely used to simulate the discontinuity problems, e.g. fatigue crack growth. This paper mainly analyzes the fatigue crack propagation under elevated temperature in nickel-based super alloy with extended finite element method. Cohesive zone model is used to describe the mechanical behavior around the crack tip. A modified creep damage model is introduced. Fatigue damage and creep damage are accumulated in a linear relationship. And the results produced by computational code are presented and draw a comparison with experimental observation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-175

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Sukumar, N. Moës, B. Moran, T. Belytschko, International Journal for Numerical Methods in Engineering 48 (2000) 1549–1570.

Google Scholar

[2] G. N. Wells, L. J. Sluys, International Journal for Numerical Methods in Engineering 50 (2001) 2667–2682.

Google Scholar

[3] N. Moës, T. Belytschko, Engineering Fracture Mechanics 69 (2002) 813–833.

Google Scholar

[4] Y. Xu, H. Yuan, Proceedings in Applied Mathematics and Mechanics 8 (2008) 10251–10252.

Google Scholar

[5] G. I. Barenblatt, Journal of Applied Mathematics and Mechanics 23 (1959) 622–636.

Google Scholar

[6] D. S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

Google Scholar

[7] G. I. Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.

Google Scholar

[8] X. P. Xu, A. Needleman, Journal of the Mechanics and Physics of Solids 42 (1994) 1397–1434.

Google Scholar

[9] A. Tabakovic, A. Karac, A. Ivankovic, A. Gibney, C. McNally, M. D. Gilchrist, Engineering Fracture Mechanics (2010).

Google Scholar

[10] K. Chaimoon, M. M. Attard, F. Tin-Loi, Computer Methods in Applied Mechanics and Engineering 197 (2008) 1938–(1952).

DOI: 10.1016/j.cma.2007.12.005

Google Scholar

[11] J. L. Bouvard, J. L. Chaboche, F. Feyel, F. Gallerneau, Internatioanl Journal of Fatigue 31 (2009) 868–879.

DOI: 10.1016/j.ijfatigue.2008.11.002

Google Scholar

[12] Y. Xu, Computational Analysis of Fretting Fatigue, Ph.D. thesis, Bergische Universität Wuppertal, (2009).

Google Scholar

[13] M. R. Winstone, K. M. Nikbin, G. A. Webster, Journal of Materials Science 20 (1985) 2471–2476.

Google Scholar

[14] D. J. Smith, G. A. Webster, Vol. 1, Ed. J. Carlson and N. G. Ohlson, Pergamon Press, Oxford (1984) 315–321.

Google Scholar