Turbulent Distance of Partially Coherent Hollow Gaussian Beams

Article Preview

Abstract:

For partially coherent hollow Gaussian beam (HGB), the turbulent distance, in which all of the spatial and angular spreading and the beam propagation factor increasing due to turbulence can be neglected, has been investigated in detail. It is shown that the turbulent distance of partial coherent HGBs increases with increasing beam order and wavelength, and decreasing turbulent parameter and coherent parameter. With increasing waist width, the turbulent distance first increases and then decreases. Furthermore, the turbulent distance of a HGB is much larger than that of the corresponding Gaussian Schell-model (GSM) beam when choosing the appropriate value of the waist width, implying that a HGB may be more appropriate to be used in optical communication links than a GSM beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-260

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cai, X. Lu, and Q. Lin, Hollow Gaussian beams and their propagation properties, Opt. Lett. 28, 2003, pp.1084-1086.

DOI: 10.1364/ol.28.001084

Google Scholar

[2] Y. Cai and L. Zhang, Propagation of a hollow Gaussian beam through a paraxial misaligned optical system, Opt. Commun. 265, 2006, pp.607-615.

DOI: 10.1016/j.optcom.2006.03.070

Google Scholar

[3] G. Zhou, Propagation properties of a non-paraxial hollow Gaussian beam, Opt. Laser Technol. 41, 2009, pp.562-569.

DOI: 10.1016/j.optlastec.2008.10.011

Google Scholar

[4] D. Deng, Generalized M2 factor of hollow Gaussian beams through a hard-edge circular aperture, Phys. Lett. A. 341, 2005, pp.352-356.

DOI: 10.1016/j.physleta.2005.04.081

Google Scholar

[5] Y. Cai and S. He, Propagation of hollow Gaussian beams through apertured paraxial optical systems, J. Opt. Soc. Am. A, 23, 2006, pp.1410-1418.

DOI: 10.1364/josaa.23.001410

Google Scholar

[6] G. Zhou, X. Chu, and J. Zheng, Investigation in hollow Gaussian beam from vectorial structure, Opt. Commun. 281, 2008, pp.5653-5658.

DOI: 10.1016/j.optcom.2008.08.028

Google Scholar

[7] Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere, Opt. Express 17, 2009, pp.17344-17356.

DOI: 10.1364/oe.17.017344

Google Scholar

[8] Y. Ai, Y. Dan and T. Jiang, propagation properties of partially coherent hollow Gaussian beams in atmospheric turbulence, Proc. SOPO, 2011, 5780521.

DOI: 10.1109/sopo.2011.5780521

Google Scholar

[9] L. Zhang, X. Lu, X. Chen, and S. He, Generation of a Dark Hollow Beam inside a Cavity, Chin. Phys. Lett. 21, 2004, p.298–301.

Google Scholar

[10] Y. Cai and Q. Lin, Hollow elliptical Gaussian Beam and its propagation through aligned and misaligned paraxial optical systems, J. Opt. Soc. Am. A, 21, 2004, pp.1058-1065.

DOI: 10.1364/josaa.21.001058

Google Scholar

[11] P. Liu and B. Lü, Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region, Opt. Commun. 272, 2007, pp.1-8.

DOI: 10.1016/j.optcom.2006.11.004

Google Scholar

[12] Y. Cai, C. Chen, and F. Wang, Modified hollow Gaussian beam and its paraxial propagation, , Opt. Commun. 278, 2007, pp.34-41.

DOI: 10.1016/j.optcom.2007.06.012

Google Scholar

[13] C. Zhao, X. Lu, L. Wang, and H. Chen, Hollow elliptical Gaussian beams generated by a triangular prism, Opt. Laser Technol., 40, 2008, p.575–580.

DOI: 10.1016/j.optlastec.2007.08.005

Google Scholar

[14] Y. Dan, S. Zeng, B. Hao, and B. Zhang, Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence, J. Opt. Soc. Am. A, 27, 2010, pp.426-434.

DOI: 10.1364/josaa.27.000426

Google Scholar

[15] Y. Dan and B. Zhang, Second moments of partially coherent beams in atmospheric turbulence, Opt. Lett. 34, 2009, pp.563-565.

DOI: 10.1364/ol.34.000563

Google Scholar

[16] A. E. Siegman, New developments in laser resonators, Proc. SPIE. 1224, 1990, pp.2-14.

Google Scholar

[17] L. C. Andrews, R.L. Phillips, Laser Beam Propagation through Random Media, second ed., SPIE, Bellingham, (2005).

Google Scholar