Enhanced Dielectric Response in Polyurethane Based All-Organic Nanocomposite

Article Preview

Abstract:

A high dielectric constant nano-composite was fabricated using polyurethane (PU) as matrix and poly (p-chloromethyl styrene) (PCMS) grafted with copper phthalocyanine oligomer (CuPc, a planar multiring semiconductor with dielectric constant>105) (name the grafting product as PCMS-g-CuPc) as filler. According to the TEM-observed morphologies, PCMS-g-CuPc balls (~80 nm) distribute uniformly in PU matrix, while in PCMS-g-CuPc balls the PCMS acts as “matrix” which contains dispersed CuPc particles with a average size of ca. 25nm [1/20 of that of CuPc in simple blend of PU and CuPc (PU/CuPc)]. At 100Hz, the dielectric constant of the nanocomposite reaches 345, almost 7 times higher than that of PU/CuPc. The enhanced dielectric response in the nano-composite can be explained by the remarkably strengthened interface exchange coupling effect as well as the Maxwell-Wagner-Sillars polarization mechanism due to the significantly reduced CuPc particle size in the nano-composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.M. Zhang, H.F. Li, M. Poh, S.H. Xu, Z.Y. Cheng, F. Xia, C. Huang, An all-organic composite actuator material with a high dielectric constant, Nature, 419 (2002) 284-287.

DOI: 10.1038/nature01021

Google Scholar

[2] Z.Y. Cheng, V. Bharti, T.B. Xu, T. Mai, Q.M. Zhang, Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers, Sensors and Actuators A: Phys. 90 (2001) 138-147.

DOI: 10.1016/s0924-4247(01)00496-4

Google Scholar

[3] K. Ren, S. Liu, M. Lin, Y. Wang, Q.M. Zhang, A compact electroactive polymer actuator suitable for refreshable Braille display, Sensors and Actuators A: Phys. 143 (2008) 335-342.

DOI: 10.1016/j.sna.2007.10.083

Google Scholar

[4] R. Pelrine, R. Kornbluh, Q.B. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science, 287 (2000) 836-839.

DOI: 10.1126/science.287.5454.836

Google Scholar

[5] R. Shankar, T.K. Ghosh, R.J. Spontak, Electroactive nanostructured polymers as tunable actuators, Adv. Mater. 19 (2007) 2218-2223.

DOI: 10.1002/adma.200602644

Google Scholar

[6] C. Huang, Q.M. Zhang, G. deBotton, K. Bhattacharya, All-organic dielectric-percolative three-component composite materials with high electromechanical response, Appl. Phys. Lett. 84 (2004) 4391-4393.

DOI: 10.1063/1.1757632

Google Scholar

[7] C. Huang, Q.M. Zhang, Enhanced dielectric and electricmechanical responses in high dielectric constant all-organic pervolative composites, Adv. Funct. Mater. 14 (2004) 501-506.

DOI: 10.1002/adfm.200305021

Google Scholar

[8] C. Huang, Q.M. Zhang, Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response, Adv. Mater. 17 (2005) 1153-1158.

DOI: 10.1002/adma.200401161

Google Scholar

[9] R. Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz, Macromolecules, 34 (2001) 5190-5915.

DOI: 10.1021/ma001576b

Google Scholar

[10] H. Windlass, R.P. Markondeya, D. Balaraman, S. Bhattacharya, R. Tummala, Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications, IEEE Trans Adv Pack. 26 (2003) 10-16.

DOI: 10.1109/tadvp.2003.811369

Google Scholar

[11] M. Arbatti, X.B. Shan, Z.Y. Cheng, Ceramic–polymer composites with high dielectric constant, Adv. Mater. 19 (2007) 1369-1372.

DOI: 10.1002/adma.200601996

Google Scholar

[12] C. Huang, Q.M. Zhang, J.Y. Li, M. Rabeony, Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites, Appl. Phys. Lett. 87 (2005) 182901-3.

DOI: 10.1063/1.2105997

Google Scholar

[13] C.C. Wang, Q.D. Shen, S.C. Tang, Q. Wu, H.M. Bao, C.Z. Yang, X.Q. Jiang, Ferroelectric polymer nanotubes with large dielectric constants for potential all-organic electronic devices, Macromol. Rapid commun. 29 (2008) 724-728.

DOI: 10.1002/marc.200800022

Google Scholar

[14] J.W. Wang, Q.D. Shen, C.Z. Yang, High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer, Macromolecules, 37 (2004) 2294-2298.

DOI: 10.1021/ma035685c

Google Scholar

[15] J.W. Wang, Q.D. Shen, H.M. Bao, C.Z. Yang, Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer, Macromolecules, 38 (2005) 2247-2252.

DOI: 10.1021/ma047890d

Google Scholar

[16] B.N. Achar, G.M. Fohlen, J.A. Parker, Phthalocyanine polymers. II synthesis and characterization of some metal phthalocyanine sheet oligomers, J. Polym. Sci. Polym. Chem. 20 (1982) 1785-1789.

DOI: 10.1002/pol.1982.170200711

Google Scholar

[17] J.Y. Li, Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction, Phys. Rev. Lett. 90 (2003) 217601-4.

DOI: 10.1103/physrevlett.90.217601

Google Scholar

[18] I. Diaconu, D.O. Dorohoi, F. Topoliceanu, Electrostriction of a Polyurethane Elastomer-Based Polyester, IEEE Sens. J. 6 (2006) 876-880.

DOI: 10.1109/jsen.2006.877978

Google Scholar

[19] H.S. Choi, S.T. Noh, Preparation and characterization of N-methyl-substituted polyurethane, J. Polym. Sci. Polym. Chem. 40 (2002) 4077-4083.

DOI: 10.1002/pola.10492

Google Scholar

[20] S. Nemat-Nasser, J.Y. Li, Electromechanical response of ionic polymer-metal composites, J. Appl. Phys. 87 (2000) 3321-3331.

DOI: 10.1063/1.372343

Google Scholar