Numerical Modeling and Simulation of Delamination Crack Growth in CF/Epoxy Composite Laminates under Cyclic Loading Using Cohesive Zone Model

Article Preview

Abstract:

This paper presents the mathematical modelling of fatigue damage able to carry out simulation of evolution of delamination in the laminated composite structures under cyclic loadings. A new elastic fatigue damage evolution law is proposed here. A classical interface damage evolution law, which is commonly used to predict static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. The proposed fatigue damage model is identified using Fracture Mechanics tests like DCB, ENF and MMB. Simulations of delamination under fatigue loading are performed and results are successfully compared with reported experimental data on HTA/6376C unidirectional material. Delamination crack growth with variable fatigue amplitude is also performed and simulation results show that the proposed fatigue damage law can also accommodate this variable amplitude phenomenon. A study of crack tip behaviour using damage variable evolution is also carried out in this paper. Finally the effect of mesh density on crack growth is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-52

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Davies P., Cantwell W., Moulin C. and Kausch H.H. A study of delamination resistance of IM6/PEEK composites, Composites Science and Technology, 36 (1989) 153-166.

DOI: 10.1016/0266-3538(89)90085-7

Google Scholar

[2] de Morais A.B. and Pereira A.B. Application of the effective crack method to mode I and mode II interlaminar fracture of carbon/epoxy unidirectional laminates. Composites Part A, 38 (2007) 785-794.

DOI: 10.1016/j.compositesa.2006.09.001

Google Scholar

[3] Hojo M. and Claes-Göran Gustafson (1987). Delamination Fatigue Crack Growth in unidirectional Graphite/Epoxy Laminates, Journal of Reinforced Plastics and Composites, 6: 36-52.

DOI: 10.1177/073168448700600104

Google Scholar

[4] Kenane M. and Benzeggagh M.L. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading, Composites Science and Technology, 57 (1997) 597-605.

DOI: 10.1016/s0266-3538(97)00021-3

Google Scholar

[5] Martin R.H. and Murri G.B. Characterization of mode I and mode II delamination growth and thresholds in AS4/PEEK composites, Composite Materials: Testing and Design ASTM STP 1059, 9 (1990) 251-270.

DOI: 10.1520/stp24115s

Google Scholar

[6] Allix O., Ladevèze P. Interlaminar interface modeling for the prediction of delamination. Composite structures, 22(4) (1992) 235-242.

DOI: 10.1016/0263-8223(92)90060-p

Google Scholar

[7] Allix O., Ladevèze P., Corigliano A. Damage analysis of interlaminar fracture specimens. Computer Structures, 31(1) (1995) 61-74.

DOI: 10.1016/0263-8223(95)00002-x

Google Scholar

[8] Allix O., Ladevèze P., Gornet L., Lévêque D., Perret L. A Computational Damage Mechanics Approach for Laminates: Identification and Comparison with Experimental Result. Damage Mechanics in Engineering Materials, Studies in Applied Mechanics, 46 (1998).

DOI: 10.1016/s0922-5382(98)80059-7

Google Scholar

[9] Peerlings R. H. J., Breklemans W. A. M., de Borst R., Geers M. G. D. Gradient-enhanced damage modelling of high-cycle fatigue. Int. J. Numer. Meth. Engng, 49(12) (2000) 1547-1569.

DOI: 10.1002/1097-0207(20001230)49:12<1547::aid-nme16>3.0.co;2-d

Google Scholar

[10] Robinson P., galvanetto U., Tumino D., Bellucci G., Violeau D. Numerical simulation of fatigue-driven delamination using interface elements. Int. J. Numer. Meth. Engng, 63 (2005) 1824-1848.

DOI: 10.1002/nme.1338

Google Scholar

[11] Tron A., Costa J., Camanho P. P., Davila C. G. Simulation of delamination in composites under high-cycle fatigue. Composites Part A: applied science and manufacturing, 38 (2007) 2270-2282.

DOI: 10.1016/j.compositesa.2006.11.009

Google Scholar

[12] Verpeaux p., Charras T. and Millard A. Castem 2000 : Une approche moderne du calcul des structures. J.M. Fouet, P. Ladevèze, R. Ohayon (ed. ), 1988 ; 227–261. http: /www-cast3m. cea. fr.

Google Scholar

[13] Juntti M., Leif E. Asp, Olsson R. Assessment of evaluation methods for the mixed-mode bending tests. Journal of Composites Technology and Research, 21(1) (1999) 37-48.

DOI: 10.1520/ctr10611j

Google Scholar

[14] Leif E. Asp, Sjogren A., Greenhalgh E. S. Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading. Journal of Composites Technology and Research, 23(2) (2001) 55-68.

DOI: 10.1520/ctr10914j

Google Scholar

[15] Harper P.W., Hallet S.R. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 75 (2008) 4774-4792.

DOI: 10.1016/j.engfracmech.2008.06.004

Google Scholar

[16] Iiaz H. Prediction of delamination crack growth in composite laminates under static and fatigue loadings using cohesive zone model. PhD thesis, Ecole Centrale de Nantes, France, (2009).

Google Scholar

[17] Gornet L., Ijaz H. High cycle fatigue model for delamination crack growth in CF/Epoxy composite laminates. Accepted for publication in International Journal of Damage Mechanics. Editor: Chaboche J.L. DOI: 10. 1177/1056189510374166.

DOI: 10.1177/1056789510374166

Google Scholar

[18] Richard W. Hamming. Numerical Methods for Scientists and Engineers, 2nd edition, Publisher: Dover Publications, 1987. ISBN-13: 9780486652412.

Google Scholar

[19] Beer G. An isoparametric joint/interface element for finite element analysis. Int. J. Numer. Methods Eng., 21 (1985) 585-600.

DOI: 10.1002/nme.1620210402

Google Scholar

[20] Williams J.G. On the calculation of energy release rates for cracked laminates. International Journal of fracture, 36 (1988) 101-109.

Google Scholar