[1]
W. Burton, and A. Noor, Assessment of continuum models for sandwich panel honeycomb cores, Comput. Methods Appl. Mech. Eng., 145_3–4 (1997) 341–360.
DOI: 10.1016/s0045-7825(96)01196-6
Google Scholar
[2]
L. Gibson, and M. Ashby, 1988. Cellular solids: Structure and properties, Pergamon, Oxford, U. K.
Google Scholar
[3]
S. Kelsey, R. Gellatly, and B. Clark, The shear modulus of foil honeycomb cores. Aircr. Eng., 30(1958) 294–302.
DOI: 10.1108/eb033026
Google Scholar
[4]
F. Meraghni, F. Desrumaux, and M. Benzeggagh, Mechanical behavior of cellular core for structural sandwich panels. Composites, 30(1999), 767–779.
DOI: 10.1016/s1359-835x(98)00182-1
Google Scholar
[5]
J. Penzien, and T. Diriksson, Effective shear modulus of honeycomb cellular structure. AIAA J., 2 (1964) 531–35.
DOI: 10.2514/3.2346
Google Scholar
[6]
J. Zhang, and M. Ashby, The out-of-plane properties of honeycombs. Int. J. Mech. Sci., 34(1992), 475–489.
Google Scholar
[7]
Remmelt Andrew Staal_2006_. Failure of Sandwich Honeycomb Panels in Bending, Phd thesis study.
Google Scholar
[8]
Shadi Omar Mohammad Balawi_2007_. Effective Mechanical Behavior of Honeycombs: Theoretical and Experimental Studies, Phd thesis study.
Google Scholar
[9]
I. G. Masters & K. E. Evans, Models for the elastic deformation of Honeycombs. Composite structures 35 (1996) 403-422.
DOI: 10.1016/s0263-8223(96)00054-2
Google Scholar
[10]
Dai-Heng Chen, Hirokazu Horii & Shingo Ozaki, Analysis of in-plane elastic modulus for a hexagonal honeycomb core: analysis of young's modulus and shear modulus. Computational science and technology, 3 (2009).
DOI: 10.1299/jcst.3.1
Google Scholar
[11]
XIA Li-juan JIN Xian-ding WANG Yang-bao. The Equivalent Analysis of Honeycomb Sandwich Plates for Satellite Structure.
Google Scholar