Fe Nano-Films Processed by Ammonia for the Catalyzed Growth of Aligned Carbon Nanotube Arrays

Article Preview

Abstract:

Fe nano-films deposited on pure Si wafer by metal vapor vacuum arc (MEVVA) ion deposition system were annealed in hydrogen and then treated by ammonia at 750 °C for the catalyzed growth of aligned carbon nanotube (CNT) arrays. Influence of ammonia on the microstructures of Fe nano-films was analyzed by a field emission scanning electron microscopy (FESEM) and image analysis software. The microstructures of the post-processed Fe nano-films were found depending on the processing time of ammonia and the film thickness. Comparing the growth results of CNTs from 10 nm Fe films, we found that when the processing temperature was 750 °C, the optimum processing time of ammonia was about 10 to 12 min for 10 nm Fe films to catalyze the growth of aligned CNT arrays.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 332-334)

Pages:

1967-1973

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56

Google Scholar

[2] Ch. Taschner, F. Pacal, A. Leonhardt, P. Spatenka, K. Bartsch, A. Graff and R. Kaltofen: Surface & Coatings Technology Vol. 174-175 (2003), p.81

DOI: 10.1016/s0257-8972(03)00712-6

Google Scholar

[3] W.A. de Heer, A. Chatlelaine and D. Ugarte: Science Vol. 270 (1995), p.1179

Google Scholar

[4] J.-M. Bonard: Solid State Electron Vol. 45 (2001), p.893

Google Scholar

[5] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell and H.J. Dai: Science Vol. 283 (1999), p.512

Google Scholar

[6] R.M. Liu and J.M. Ting: Mater. Chem. and Phys. Vol. 82 (2003), p.571

Google Scholar

[7] E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang and D.Y. Zhong: Carbon Vol. 41 (2003), p.1827

Google Scholar

[8] J.H. Choi, T.Y. Lee, S.H. Choi, J.H. Han, J.B. Yoo, C.Y. Park, T.W. Jung, S.G. Yu, W.K. Yi, I.T. Han and J.M. Kim: Thin Solid Films Vol. 435 (2003), p.318

DOI: 10.1016/s0040-6090(03)00341-9

Google Scholar

[9] S.Y. Chou, P.R. Krauss and P.J. Renstrom: Appl. Phys. Lett. Vol. 67(21) (1995), p.3114

Google Scholar

[10] S.Y. Chou, P.R. Krauss and P.J. Renstrom: Science Vol. 272 (1996), p.85

Google Scholar

[11] X.Z. Wang, Z. Hu, Q. Wu, X. Chen and Y. Chen: Thin Solid Films Vol. 390 (2001), p.130

Google Scholar

[12] M.J. Kim, J.H. Choi, J.B. Park, S.K. Kim, J.B. Yoo and C.Y. Park: Thin Solid Films Vol. 435 (2003), p.312

Google Scholar

[13] Yuji Fujiwara, Hitoshi Takegawa, Hideki Sato, Kohji Maeda, Yahachi Saito, Tadashi Kobayashi, and Shigeru Shiomi: J. Appl. Phys. Vol. 95 (2004), p.7118

Google Scholar

[14] S.J. Henley, C.H.P. Poa, A.A.D.T. Adikaari, C.E. Giusca, J.D. Carey and S.R.P. Silva: Appl. Phys. Lett. Vol. 84 (2004), p.4035

Google Scholar

[15] G.F. Wang, H.X. Zhang, X.J. Zhang, Y.G. Wu and R.H. Tian: Surface & Coatings Technology Vol. 128-129 (2000), p.470

Google Scholar

[16] Information on http://www.mediacy.com

Google Scholar

[17] R.T. Zheng, G.A. Cheng, Y.B. Peng, Y. Zhao, H.P. Liu and C.L. Liang: Science in China (ser. E) Vol. 47 (2004), p.616

Google Scholar

[18] M.H. Kuang, Z.L. Wang, X.D. Bai, J.D. Guo and E.G. Wang: Appl. Phys. Lett. Vol. 76 (2000), p.1255

Google Scholar

[19] M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson and W.I. Milne: J. Appl. Phys. Vol. 90 (2001), p.5308

DOI: 10.1063/1.1410322

Google Scholar

[20] W. Arabczyk and U. Narkiewicz: Applied Surface Science Vol. 196 (2002), p.423

Google Scholar

[21] K.B.K. Teo, S.-B. Lee, M. Chhowalla, V. Semet, V.T. Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D.G. Hasko, H. Ahmed, G.A.J. Amaratunga and W.I. Milne: Nanotechnology Vol. 14 (2003), p.204

DOI: 10.1088/0957-4484/14/2/321

Google Scholar