Electrospun Fibrous Films with Sub-Micrometer Structure in Biomedical Applications

Article Preview

Abstract:

Although manufactured nanomaterials have a great many of fantastic functions,the adverse impacts about them have been observed. As a kind of nanomaterial, biomedical films obtained from electrospinning are valued greatly, and the sizes of the diameters in electrospun films plays a fundamental role in enhancing the safety of films. When the diameter of fibers increased to hundreds of nanometers, it will become difficult for fibers to diffuse and infiltrate into human’s body, and then the security of the biomedical films is enhanced greatly. In our work, high viscosity polymer and high viscosity solution are electrospun to increase the diameter of fibers. Besides, melt-eletrospinning is introduced as an alternative candidate for improving the security of biomedical films, especially no poisonous solvent exists.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 332-334)

Pages:

977-980

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kan, T. Mokari, E. Rothenberg and U. Banin: Nature Materials.Vol. 2(2003), p.155.

Google Scholar

[2] S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin and J. R. Lead: Environmental Toxicology and Chemistry.Vol. 27(2008), p.1825.

DOI: 10.1897/08-090.1

Google Scholar

[3] Q. L. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li and P. J. J. Alvarez: Water Research.Vol. 42(2008), p.4591.

DOI: 10.1016/j.watres.2008.08.015

Google Scholar

[4] J. Lee, S. Mahendra and P. J. J. Alvarez: Acs Nano.Vol. 4 p.3580.

Google Scholar

[5] R. D. Handy, R. Owen and E. Valsami-Jones: Ecotoxicology.Vol. 17(2008), p.315.

Google Scholar

[6] C. McAtamney, F. Pichot, A. O'Flaherty, N. Leyland, S. N. Rao, N. Stobie, M. Kinsella, D. Corr and U. Bach: Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Pts 1 and 2.Vol. 4876(2003), p.796.

DOI: 10.1117/12.481096

Google Scholar

[7] K. Yang, L. Z. Zhu and B. S. Xing: Environmental Science & Technology.Vol. 40(2006), p.1855.

Google Scholar

[8] P. H. M. Hoet, A. Nemmar and B. Nemery: Nature Biotechnology.Vol. 22(2004), p.19.

Google Scholar

[9] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli and R. L. Hunter: Critical Reviews in Toxicology.Vol. 36(2006), p.189.

Google Scholar

[10] K. Soto, K. M. Garza and L. E. Murr: Acta Biomaterialia.Vol. 3(2007), p.351.

Google Scholar

[11] R. D. Handy and B. J. Shaw: Health Risk & Society.Vol. 9(2007), p.125.

Google Scholar

[12] C. Y. Xu, R. Inai, M. Kotaki and S. Ramakrishna: Biomaterials.Vol. 25(2004), p.877.

Google Scholar

[13] Y. B. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park and K. S. Chian: Biomaterials.Vol. 28(2007), p.861.

Google Scholar

[14] J. H. He, Y. Liu, L. Xu and J. Y. Yu: Chaos Solitons & Fractals.Vol. 32(2007), p.1096.

Google Scholar

[15] Y. Q. Wan, J. H. He, Y. Wu and H. Y. Yu: Materials Letters.Vol. 60(2006), p.3296.

Google Scholar

[16] C. Mit-uppatham, M. Nithitanakul and P. Supaphol: Macromolecular Chemistry and Physics.Vol. 205(2004), p.2327.

Google Scholar

[17] S. A. Theron, E. Zussman and A. L. Yarin: Polymer.Vol. 45(2004), p.2017.

Google Scholar

[18] P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee and M. Moller: Polymer.Vol. 48(2007), p.6823.

Google Scholar

[19] P. D. Dalton, K. Klinkhammer, J. Salber, D. Klee and M. Moller: Biomacromolecules.Vol. 7(2006), p.686.

Google Scholar