Magnitude of Intrinsic Electrocaloric Effect in PbTiO3 at High Electric Fields

Article Preview

Abstract:

Based on Landau-Devonshire theory, the electrothermal properties of PbTiO3 bulk and film are computed near the temperatures of their phase transitions. A first-order ferroelectric to paraelectric phase transition is present in PbTiO3 bulk. The coercive electric field at 700 K is about 25 MV m-1. High applied electric fields drive the transition to higher temperatures and the P−T curves to be continuous. For PbTiO3 film, the second-order phase transition reduces the excess entropy, and thereby the isothermal entropy change. With increasing electric field, the excess specific heat capacity becomes small, despite higher transition temperatures. The change of in-plane tensile misfit stress lowers the transition temperature. Besides, the adiabatic temperature change and the refrigerant capacity of PbTiO3 bulk are 4.76 K and 94.1 kJ m-3, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1004-1008

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dechang Jia: Electronic materials. Heilongjiang: Harbin Institute of Technology Press. 2000.

Google Scholar

[2] R.E Cohen: Nature. Vol. 358 (1992), p.136.

Google Scholar

[3] T. Hayashi, N. OJim and H Maiwa. Jpn: J. Appl. Phys. Vol. 33 (1994), p.5277.

Google Scholar

[4] K. Ishikwa, K. Yshikawa and N Okada: Phys. Rev. B. Vol. 37 (1988), p.5852.

Google Scholar

[5] A Hadni, R Thomas: Ferroelectrics. Vol. 59 (1984), p.221.

Google Scholar

[6] A George., J Rossetti and C Eric: Appl. Phy. Lett. Vol. 59 (1991), p.2524.

Google Scholar

[7] R.S. Batzer, B.M. Yen, D. Liu, H. Chen, H. Kubo and G.R. Bai: J. Appl. Phys. Vol. 80 (1996), p.6235.

Google Scholar

[8] Dingquan Xiao, Jianguo Zhu and Bin Yang: Piezoelectrics & Acoustooptics. Vol. 16 (1994), p.31.

Google Scholar

[9] A.S. Mischenko, Q. Zhang, J.F. Scott, R.W and Whatmore, N.D: Mathur. Science Vol. 311 (2006), p.1270.

Google Scholar

[10] A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott and N.D: Mathur. Appl. Phys. Lett. Vol. 89 (2006), p.242912.

Google Scholar

[11] G. Akcay, S.P. Alpay, J.V. Mantese and G.A Rossetti: Appl. Phys. Lett. Vol. 90 (2007), p.252909.

Google Scholar

[12] A. F Devonshire: Philos. Mag. Vol. 40 (1949), p.1040.

Google Scholar

[13] A. F. Devoshire: Philos. Mag. Vol. 42 (1951), p.1065.

Google Scholar

[14] N.A. Pertsev, A.G. Zembilgotov and A. K. Tagantsev: Phys. Rev. Lett. Vol. 80 (1998), p.1988.

Google Scholar

[15] J. Zhang, A.A. Heitmann, S.P. Alpay and G.A Rossetti. Jr: J. Mater. Sci Vol 44 (2009), p.5263.

Google Scholar

[16] Xianlin Dong, Chaoliang Mao, Chunhua Yao, Fei Cao and Genshui Wang: Infrared and Laser Engineering. Vol. 37 (2008), p.37.

Google Scholar

[17] Yinglong Wang, Tongru Wei, Baoting Liu, Lizhi Zhu and Guangsheng Fu: Journal of Functional Materials. Vol. 7 (2008), p.1115.

Google Scholar

[18] Chunhong Tang, Liben Li, Shuguang Tang, Tieping Wang, Yongkang Cui, and Qingchun Wu: Journal of Suzhou University. Vol. 20 (2004), p.49.

Google Scholar

[19] B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J Wang and Z.D. Zhang: Appl. Phys. Lett. Vol. 96 (2010), p.102903.

Google Scholar