Enhanced Luminescence Properties of Hexagonal-Phase NaYF4: Eu3+ Microrods by Annealing Treatment

Article Preview

Abstract:

Hexagonal phase NaYF4: Eu3+ materials were successfully synthesized by a facile EDTA-assisted hydrothermal route. The microstructure, morphology and luminescence property of the as-synthesized samples were characterized by XRD, XPS, SEM, TEM, HRTEM and photoluminescence (PL) spectra. The pristine NaYF4: Eu3+ microprisms have uniform size and morphology with 3-4 micrometers in length and ca. 500 nm in diameter. The annealing treatment afterwards achieved high crystallinity, and moreover, had a remarkable influence on morphologies of the NaYF4: Eu3+ sample. In comparison with the pristine sample, the annealed NaYF4: Eu3+ microcrystals had a markedly enhancement of down-conversion (DC) luminescence properties, which may be due to the high crystallinity and large surface roughness resulted from annealing treatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1009-1013

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Meiser, C. Cortez and F. Caruso: Angewandte Chemie-International Edition Vol. 43 (2004), p.5954

Google Scholar

[2] J.W. Stouwdam and F.C.J.M. van Veggel: Nano Letters. Vol. 2 (2002), p.733

Google Scholar

[3] P.R. Diamente, R.D. Burke and F.C.J.M. van Veggel: Langmuir. Vol. 22 (2006), p.1782

Google Scholar

[4] L.Y. Wang and Y.D. Li: Nano Letters. Vol. 6 (2006), p.1645

Google Scholar

[5] H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You and C.H. Yan: J. American Chem. Soc. 128 (2006), p.6426

Google Scholar

[6] L.Y. Wang and Y.D. Li: Chemistry of Materials. Vol. 19 (2007), p.727

Google Scholar

[7] L.W. Yang, H.L. Han, Y.Y. Zhang and J.X. Zhong: J. Phys. Chem. C. Vol.113 (2009), p.18995

Google Scholar

[8] J.H. Zeng, J. Su, Z.H. Li, R.X. Yan and Y.D. Li: Advanced Materials. Vol. 17 (2005), p.2119

Google Scholar

[9] C.X. Li, Z.W. Quan, J. Yang and J. Lin: Inorganic Chemistry. Vol. 46 (2007), p.6329

Google Scholar

[10] N. Martin, P. Boutinaud, M. Malinowski, R. Mahiou and J.C. Cousseins: Journal of Alloys and Compounds. Vol. 277 (1998), p.304

DOI: 10.1016/s0925-8388(98)00323-5

Google Scholar

[11] J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kramer and H.U. Gudel: Journal of Luminescence Vol. 117 (2006), p.1

Google Scholar

[12] N. Menyuk, K. Dwight and F. Pinaud: Appl. Phys. Lett. Vol. 353 (2011), p.569

Google Scholar

[13] A. Santana-Alonso, J. Mendez-Ramos and A.C. Yanes: Optical Materials Vol. 32 (2010), p.903

Google Scholar

[14] Guofeng Wang and Weiping Qin: Journal of Alloys and Compounds. Vol. 475 (2009), p.452

Google Scholar

[15] Y.G. Su, L.P. Li and G.S. Li: Crystal Growth & Design. Vol. 8 (2008), p.2678

Google Scholar

[16] J.W. Zhao, Y.J. Sun, X.G. Kong, L.J. Tian and Y. Wang: J. Phys. Chem. B. Vol. 112 (2008), p.15666

Google Scholar

[17] F. Zhang, J. Li, J. Shan, L. Xu and D.Y. Zhao: Chemistry-a European Journal. Vol. 15 (2009), p.11010

Google Scholar

[18] G.F. Wang, W.P. Qin, L.L. Wang and G.D. Wei: Journal of Rare Earths. Vol. 27 (2009), p.394

Google Scholar

[19] Z.J. Wang, F. Tao and L.Z. Yao: Journal of Crystal Growth. Vol. 290 (2006), p.296

Google Scholar

[20] G. Jia, Y.H. Zheng, K. Liu, Y.H. Song, H.P. You and H.J. Zhang: J. Phys. Chem. C. Vol. 113 (2009), pp.153-58

Google Scholar

[21] Guang Jia, Yanhua Song, Mei Yang, Yeju Huang, Lihui Zhang and Hongpeng Youl: Optical Materials. Vol. 31 (2009), p.1032

Google Scholar

[22] M.F. Zhang, H. Fan, B.J. Xi, X.Y. Wang, C. Dong and Y.T. Qian: J. Phys. Chem. C. Vol. 111 (2007), pp.6652-57

Google Scholar

[23] C.X. Li, C.M. Zhang, Z.Y. Hou, L.L. Wang and Z.W. Quan: J. Phys. Chem. C. Vol. 113 (2009), p.2332

Google Scholar

[24] S. Ray, P. Pramanik, A. Singha and A. Roy: J. Appl. Phys. Vol. 97 (2005), p.094312

Google Scholar