Constructing a Syntheses Table of the Standard Amino Acid Based on the PAM250 Matrix

Article Preview

Abstract:

It is well known that there are some similarities among various naturally occurring amino acids. The standard amino acids have been grouped by their general properties and the chemical structures of their side chains. In this paper we divided the molecular weight of amino acid into two parts: backbone molecular weight Mb and side chain molecular weight Ms. We naturally grouped the amino acids into two sets according to the rate of Ms / Mb. We developed a method to construct a syntheses table to reflect the relevant physicochemical properties based on the PAM250 matrix and successfully established an elegant table of the twenty amino acids. Our work proved that PAM250 matrix could be used not only in finding reasonable alignments but also in grouping similar amino acid.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1279-1284

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang, J. & Wang, W. (1999). Nature structural biology. 6,1033-1038.

Google Scholar

[2] Xia, X. & Li, W.(1998). J.Mol.Evol.47,557-564.

Google Scholar

[3] Murphy, L.R., Wallqvist, A. & Levy, R. M. (2000). Protien Engineering. 13,148-152.

Google Scholar

[4] Li, T., Fan, K., Wang, J. & Wang, W. (2003). Protein Engineering. 16, 323-330.

Google Scholar

[5] Kosiol, C., Goldman, N. & Buttimore, N. H. (2004). Journal of Theoretical Biology. 228, 97-106.

Google Scholar

[6] Dayhoff, M.O., Barker, W.C. & Hunt, L.T. (1983). Methods Enzymol. 91,524-545.

Google Scholar

[7] Solis, A. D. & Rackovsky, S. (2000). Proteins: Struct. Funct. Genet. 38, 149-164.

Google Scholar

[8] Cannata, N., Toppo, S., Romaldi, C., & Valle, G., (2002). Simplifying amino acid alphabets by means of a branch and bound algorithm and substitution matrices. Bioinformatics 18, 1102-1108.

DOI: 10.1093/bioinformatics/18.8.1102

Google Scholar

[9] Sun, S.(1993). Reduced representation model of proteinal and genetic algorithms. Protein Sci. 2,762-785.

Google Scholar

[10] Samudrala,R., Pedersen, J., Zhou, H., Luo, R., Fidelis, K. & Moult, J.(1995) Confronting the problem of interconnected structural changes in the comparative modeling of proteins. Protein: Struct .Funct. Genet. 23,327-336.

DOI: 10.1002/prot.340230307

Google Scholar

[11] Taylor, W.R. (1986). The classification of amino acid conservation. J. Theor. Biol. 119, 205-218.

Google Scholar

[12] Cieplak, M., Holter, N. S., Maritan, A. & Banavar J.R. (2001) J.Chem.Phys. 114,1420-1423.

Google Scholar

[13] Murphy, L. R., Wallqvist, A. & Levy, R. M. (2000) Protein Eng., 13, 149-152.

Google Scholar

[14] Miyata,T., Miyazawa,S. & Yasunaga,T. (1979) J.Mol.Evol., 12, 219-236.

Google Scholar

[15] Risler, J. L., Delorme, M.O., Delacroix, H. & Henaut, A. (1988). J.Mol.Biol., 204,1019-1029.

Google Scholar

[16] Wang, J and Wang, W. (2000) Phys. Rev. E, 61,6981-6986.

Google Scholar

[17] Santibanez, M. and Rohde,K.(1987) CABIOS,3,111-114.

Google Scholar

[18] Grantham,R. (1974). Amino acid difference formula to help explain protein evolution. Science . 185, 862-864.

DOI: 10.1126/science.185.4154.862

Google Scholar

[19] Sinha, N. & Nussinov, R. (2001) Proc. Natl Acad. Sci. USA, 98, 3139-3144.

Google Scholar

[20] Regan, L. & Degrado, W. F. (1988) Science, 241,976-978.

Google Scholar

[21] Kamtekear, S., Schiffer, J.M., Xiong, H., Babik J.M. & Hecht, M. H. (1993) Science, 265,1680-1685.

Google Scholar

[22] Davidson, A.R., Lumb K.J. & Sauer, R. T. (1995) Nat. Struct. Biol. 2, 856-863.

Google Scholar

[23] Riddle, D.S., Santiago J.V., Bray, S.T., Doshi,N., Grantcharova, V.P., Yi,Q. & Baker,D.(1997) Nat. Struct. Biol. 4,805-809.

DOI: 10.1038/nsb1097-805

Google Scholar