Realization of a Wideband Microwave Noise Filter Used Magnetic Multilayer Thin Films by Using Exchange Bais Stacks Structure

Article Preview

Abstract:

The microwave magnetic dynamic properties of the [NiFe(40nm)/IrMn(15nm)]6/[NiFe(30nm)/IrMn(15nm)]7/[NiFe(20nm)/IrMn(15nm)]10 multi-stacks structure films, prepared by high vacuum DC magnetron sputtering deposition, have been investigated at the frequency range from 10 MHz to 6 GHz. By changing the thickness of the ferromagnetic (FM) NiFe layer in bottom [NiFe(t nm)/IrMn(15nm)]6 stack part, a tunable lower frequency range used magnetic multilayer can be realized. The influence of the NiFe layer thickness in bottom stack to static and dynamic magnetic properties were obtained and analyzed. Combining with the top [NiFe(30nm)/IrMn(15nm)]7/[NiFe(20nm)/IrMn(15nm)]10 two stacks used in the higher frequency, a kind of multi-stacks structure magnetic thin films were fabricated for the wideband microwave noise filter.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1267-1272

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nguyen N. Phuoc, Feng Xu, and C. K. Ong: Appl. Phys. Lett Vol. 94 (2009), 092505

Google Scholar

[2] Hanqiao Zhang, Chaojiang Li, Ralu Divan, Axel Hoffmann, and Pingshan Wang: IEEE Trans. Magn Vol. 46 (2010), p.2442

Google Scholar

[3] Y. Lamy and B. Viala: IEEE Trans. Magn Vol. 42 (2006), p.3332

Google Scholar

[4] X. Chen, Y. G. Ma, and C. K. Ong: J. Appl. Phys Vol. 104 (2008), p.013921

Google Scholar

[5] Y. Shimada, M. Yamaguchi, S. Ohnuma, T. Itoh, W. D. Li, S. Ikeda, K. H. Kim, and H. Nagura: IEEE Trans. Magn Vol. 39 (2003), p.3052

DOI: 10.1109/tmag.2003.815892

Google Scholar

[6] M. Vroubel, Y. Zhuang, B. Rejaei, J. N. Burghartz, A. M. Crawford, and S. X. Wang: IEEE Trans. Magn Vol. 40 (2004), p.2835

DOI: 10.1109/tmag.2004.835096

Google Scholar

[7] Changjun Jiang, Desheng Xue, Dangwei Guo, and Xiaolong Fan: J. Appl. Phys Vol. 106 (2009), p.103910

Google Scholar

[8] S. G. Reidy, L. Cheng, and W. E. Bailey: Appl. Phys. Lett Vol. 82 (2003), p.1254

Google Scholar

[9] J. Fassbender and J. McCord: Appl. Phys. Lett Vol. 88 (2006), p.252501

Google Scholar

[10] Guozhi Chai, Yuancai Yang, Jingyi Zhu, Min Lin, Wenbo Sui, Dangwei Guo, Xiling Li, and Desheng Xue: Appl. Phys. Lett Vol. 96 (2010), p.012505

Google Scholar

[11] J. F. Sierra, F. G. Aliev, R. Heindl, S. E. Russek, and W. H. Rippard: Appl. Phys. Lett Vol. 94(2009), p.012506

Google Scholar

[12] N. N. Phuoc, F. Xu, and C. K. Ong: Appl. Phys. Lett Vol. 94 (2009), p.092505

Google Scholar

[13] Nguyen N. Phuoc, Feng Xu, and C. K. Ong: Appl. Phys. Lett Vol. 94 (2009), p.092505

Google Scholar

[14] Y. Lamy and B. Viala: IEEE Trans. Magn Vol. 42 (2006), p.3332

Google Scholar

[15] N. N. Phuoc, S. L. Lim, F. Xu, Y. G. Ma, and C. K. Ong: J. Appl. Phys Vol. 104 (2008), p.093708

Google Scholar

[16] Y. S. Lee, S. Hong, C. G. Kim, and C. O. Kim: J. Magn. Magn. Mater Vol. 272–276 (2004), p.943

Google Scholar

[17] D. Y. Kim, C. O. Kim, M. Tsunoda, M. Yamaguchi, S. Yabugami, and M. Takahashi: J. Appl. Phys Vol. 101 (2007), p. 09E511

Google Scholar