Photocatalytic Degradation of Methylene Blue over Co-Ag3VO4 under Visible Light Irradiation

Article Preview

Abstract:

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1385-1390

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] R. Asahi, T. Morikawa, T.Ohwaki, K. Aoki, Y, Taga, Visible-light photocatalysis in nitrogen-doped titamiun oxides. Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[3] J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6under visible light irradiation. Catal. Lett. 92 (2004) 53-56.

DOI: 10.1023/b:catl.0000011086.20412.aa

Google Scholar

[4] X. Li, X. Quan, C. Kutal, Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticles. Scripta Mater. 50 (2004) 499-505.

DOI: 10.1016/j.scriptamat.2003.10.031

Google Scholar

[5] G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laine, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl. Catal. B: Environ. 47 (2004) 73-84

DOI: 10.1016/j.apcatb.2003.04.002

Google Scholar

[6] A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J.Photochem. Photobiol. A: Chem. 141 (2001) 231-239.

DOI: 10.1016/s1010-6030(01)00423-3

Google Scholar

[7] Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 424 (2001) 625-627.

DOI: 10.1038/414625a

Google Scholar

[8] J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. 116 (2004) 4463-4466.

DOI: 10.1002/anie.200353594

Google Scholar

[9] A. Ishikawa, T. Takata, T. Matsumura, J.N. Kondo, M. Hara, H.Kobayashi, K. Domen, Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J. Phys. Chem. B. 108 (2004) 2637–2642.

DOI: 10.1021/jp036890x

Google Scholar

[10] D. Wang, J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem. Mater. 17 (2005) 5177–5182.

DOI: 10.1002/chin.200550016

Google Scholar

[11] J.H. Ye, Z.G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M.Imai, T. Shishido, A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett. 356 (2002) 221–226.

DOI: 10.1016/s0009-2614(02)00254-3

Google Scholar

[12] J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 107 (2003) 14265–14269.

Google Scholar

[13] J.H. Ye, Z.G. Zou, A. Matsushita, A novel series of water splitting photocatalysts NiM2O6 (M = Nb, Ta) active under visible light. Int. J. Hydrogen Energy 28 (2003) 651–655.

DOI: 10.1016/s0360-3199(02)00158-1

Google Scholar

[14] J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu, J.B. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 178 (2005) 1968-1972.

DOI: 10.1016/j.jssc.2005.04.003

Google Scholar

[15] J.W. Tang, Z.G. Zou, J. Yin, J.H. Ye. Photocatalytic degradation of methylene blue on Caln2O4 under visible light irradiation. Chem. Phys. Lett. 382 (2003)175–179.

DOI: 10.1016/j.cplett.2003.10.062

Google Scholar

[16] L. Zhang, D.R. Chen, X.L. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110 (2006) 2668-2673.

DOI: 10.1021/jp056367d.s001

Google Scholar

[17] L. Zhou, W.Z. Wang, L.S. Zhang, Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A: Chem. 268 (2007) 195-200.

DOI: 10.1016/j.molcata.2006.12.026

Google Scholar

[18] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution. Catal. Lett. 53 (1998) 229-230.

Google Scholar

[19] A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 121 (1999) 11459-11467.

DOI: 10.1021/ja992541y

Google Scholar

[20] S.Tokunaga, H.Kato, A.Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem.Mater. 13 (2001) 4624-4628

DOI: 10.1021/cm0103390

Google Scholar

[21] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 106 (2002) 12441-12447

DOI: 10.1021/jp025974n

Google Scholar

[22] A. Kudo, Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy 10 (2006) 197-202

Google Scholar

[23] R. Knota, H. Kado, H. Kobayashi, A. Kudo, Photophysical Properties and Photocatalytic Activities under Visible Light Irradiation of Silver Vanadates. Phys. Chem. Chem. Phys. 5 (2003) 3061-3065

DOI: 10.1039/b300179b

Google Scholar

[24] X. X. Hu, C. Hu, Preparation and visible-light photocatalytic activity of Ag3VO4 powders. J. Solid State Chem. 180 (2007) 725-732.

DOI: 10.1016/j.jssc.2006.11.032

Google Scholar

[25] B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl. Catal. B: Environ. 99 (2010) 214-221.

DOI: 10.1016/j.apcatb.2010.06.022

Google Scholar

[26] M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B: Environ., 57 (2005) 23-30.

DOI: 10.1016/j.apcatb.2004.10.001

Google Scholar