[1]
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
R. Asahi, T. Morikawa, T.Ohwaki, K. Aoki, Y, Taga, Visible-light photocatalysis in nitrogen-doped titamiun oxides. Science 293 (2001) 269-271.
DOI: 10.1126/science.1061051
Google Scholar
[3]
J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6under visible light irradiation. Catal. Lett. 92 (2004) 53-56.
DOI: 10.1023/b:catl.0000011086.20412.aa
Google Scholar
[4]
X. Li, X. Quan, C. Kutal, Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticles. Scripta Mater. 50 (2004) 499-505.
DOI: 10.1016/j.scriptamat.2003.10.031
Google Scholar
[5]
G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laine, Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl. Catal. B: Environ. 47 (2004) 73-84
DOI: 10.1016/j.apcatb.2003.04.002
Google Scholar
[6]
A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J.Photochem. Photobiol. A: Chem. 141 (2001) 231-239.
DOI: 10.1016/s1010-6030(01)00423-3
Google Scholar
[7]
Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 424 (2001) 625-627.
DOI: 10.1038/414625a
Google Scholar
[8]
J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. 116 (2004) 4463-4466.
DOI: 10.1002/anie.200353594
Google Scholar
[9]
A. Ishikawa, T. Takata, T. Matsumura, J.N. Kondo, M. Hara, H.Kobayashi, K. Domen, Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J. Phys. Chem. B. 108 (2004) 2637–2642.
DOI: 10.1021/jp036890x
Google Scholar
[10]
D. Wang, J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem. Mater. 17 (2005) 5177–5182.
DOI: 10.1002/chin.200550016
Google Scholar
[11]
J.H. Ye, Z.G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M.Imai, T. Shishido, A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett. 356 (2002) 221–226.
DOI: 10.1016/s0009-2614(02)00254-3
Google Scholar
[12]
J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 107 (2003) 14265–14269.
Google Scholar
[13]
J.H. Ye, Z.G. Zou, A. Matsushita, A novel series of water splitting photocatalysts NiM2O6 (M = Nb, Ta) active under visible light. Int. J. Hydrogen Energy 28 (2003) 651–655.
DOI: 10.1016/s0360-3199(02)00158-1
Google Scholar
[14]
J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu, J.B. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 178 (2005) 1968-1972.
DOI: 10.1016/j.jssc.2005.04.003
Google Scholar
[15]
J.W. Tang, Z.G. Zou, J. Yin, J.H. Ye. Photocatalytic degradation of methylene blue on Caln2O4 under visible light irradiation. Chem. Phys. Lett. 382 (2003)175–179.
DOI: 10.1016/j.cplett.2003.10.062
Google Scholar
[16]
L. Zhang, D.R. Chen, X.L. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110 (2006) 2668-2673.
DOI: 10.1021/jp056367d.s001
Google Scholar
[17]
L. Zhou, W.Z. Wang, L.S. Zhang, Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A: Chem. 268 (2007) 195-200.
DOI: 10.1016/j.molcata.2006.12.026
Google Scholar
[18]
A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution. Catal. Lett. 53 (1998) 229-230.
Google Scholar
[19]
A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 121 (1999) 11459-11467.
DOI: 10.1021/ja992541y
Google Scholar
[20]
S.Tokunaga, H.Kato, A.Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem.Mater. 13 (2001) 4624-4628
DOI: 10.1021/cm0103390
Google Scholar
[21]
H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 106 (2002) 12441-12447
DOI: 10.1021/jp025974n
Google Scholar
[22]
A. Kudo, Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy 10 (2006) 197-202
Google Scholar
[23]
R. Knota, H. Kado, H. Kobayashi, A. Kudo, Photophysical Properties and Photocatalytic Activities under Visible Light Irradiation of Silver Vanadates. Phys. Chem. Chem. Phys. 5 (2003) 3061-3065
DOI: 10.1039/b300179b
Google Scholar
[24]
X. X. Hu, C. Hu, Preparation and visible-light photocatalytic activity of Ag3VO4 powders. J. Solid State Chem. 180 (2007) 725-732.
DOI: 10.1016/j.jssc.2006.11.032
Google Scholar
[25]
B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl. Catal. B: Environ. 99 (2010) 214-221.
DOI: 10.1016/j.apcatb.2010.06.022
Google Scholar
[26]
M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B: Environ., 57 (2005) 23-30.
DOI: 10.1016/j.apcatb.2004.10.001
Google Scholar