Size Dependent Pull-in Phenomena in Electro-Statically Actuated Micro-Beam Based on the Modified Couple Stress Theory

Article Preview

Abstract:

A modified continuum model of electro-statically actuated micro-beam is presented based on the modified couple stress theory. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Bernoulli-Euler beam theory. The governing equation of the micro-beam is derived based on the Hamilton’s principle, which accounts for the effects of the moderately large deflection, the residual stress and the fringing electrostatic field. The numerical analysis of mechanical characterization is performed by the Analog Equation Method (AEM). The effects of the couple stress on the static and dynamic responses, pull-in voltage and pull-in time are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

633-640

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Choi, E.G. Lovell: J. Micromech. Microeng. Vol. 7 (1997), pp.24-29.

Google Scholar

[2] M.I. Younis, E.M. Abdel-Rahman and A.H. Nayfeh: J. Microelectromech. Syst. Vol. 12 (2003), pp.672-680.

Google Scholar

[3] L.X. Zhang, Y.P. Zhao: Microsyst. Technol. Vol. 9 (2003), pp.420-426.

Google Scholar

[4] R.C. Batra, M. Porfiri and D. Spinello: J. Microelectromech. Syst. Vol. 15 (2006), pp.1175-1189.

Google Scholar

[5] Y. Zhang, Y.P. Zhao: Sensors and Actuators (A) Vol. 127(2) (2006), pp.366-380.

Google Scholar

[6] N.A. Fleck, G.M. Muller, M.F. Ashby and J.W. Hutchinson: Acta Metallurgica et Materialia Vol. 42 (2) (1994), pp.475-487.

DOI: 10.1016/0956-7151(94)90502-9

Google Scholar

[7] Q. Ma, D.R. Clarke: Journal of Materials Research Vol. 10 (4) (1995), pp.853-863.

Google Scholar

[8] J.S. Stolken, A.G. Evans: Acta Materialia Vol. 46 (14) (1998), pp.5109-5115.

Google Scholar

[9] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang and P. Tong: Journal of the Mechanics and Physics of Solids Vol. 51 (8) (2003), pp.1477-1508.

Google Scholar

[10] R.A. Toupin: Arch. Rational Mech. Anal. Vol. 17 (1964), pp.85-112.

Google Scholar

[11] R.D. Mindlin, H. F. Tiersten: Arch. Rational Mech. Anal. Vol. 11(1962), pp.415-448.

Google Scholar

[12] W.T. Koiter: Proc. K. ned. Akad. Wet B, Vol. 67 (1) (1964), pp.17-44.

Google Scholar

[13] S.J. Zhou, Z.Q. Li: J Shandong Univ Technol Vol. 31 (5) (2001), pp.401-407.

Google Scholar

[14] X. Kang, X.F. Xi: J Mech Strength Vol. 29 (1) (2007), pp.1-4, in Chinese.

Google Scholar

[15] F. Yang, A.C.M. Chong, D.C.C Lam and P. Tong: International Journal of Solids and Structures Vol. 39 (2002), pp.2731-2743.

Google Scholar

[16] S.K. Park, X.L. Gao: J. Micromech. Microeng. Vol. 16 (2006), pp.2355-2359.

Google Scholar

[17] Shengli Kong, Shenjie Zhou, Zhifeng Nie and Kai Wang: International Journal of Engineering Science Vol. 46 (2008), pp.427-437.

Google Scholar

[18] H.M. Ma, X.L. Gao and J.N. Reddy: J. Mech. Phys. Solids Vol. 56 (2008), pp.3379-3391.

Google Scholar

[19] R.K. Gupta, Ph.D. Thesis, the Massachusetts Institute of Technology, USA, 1997.

Google Scholar

[20] J. Qian, C. Liu, D.C. Zhang and Y.P. Zhao: Journal of mechanical strength (special Issus on MEMS), Vol. 23(4) (2001), pp.393-401.

Google Scholar

[21] J. T. Katsikadelis, G. C. Tsiatas: J. Sound. Vib. Vol. 270 (2004), pp.847-863.

Google Scholar

[22] P. M. Osterberg, S.D. Senturia: Journal of microelectromech. Syst. Vol. 6 (2) (1997), pp.107-118.

Google Scholar

[23] R. Zhu, E. Pan, P.W. Chung, X. Cai, K.M. Liew and A. Buldum: Semicond. Sci. Technol. Vol. 21 (2006), pp.906-911.

DOI: 10.1088/0268-1242/21/7/014

Google Scholar