[1]
J. M. Lehn, Supramolecular Chemistry, Concepts and Perspectives. VCH, New York 1995.
Google Scholar
[2]
J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley and Sons, New York, 2000.
Google Scholar
[3]
B. J. Holliday, C. A. Mirkin, Angew. Chem., Int. Ed. 40(2001) 2022-2043.
Google Scholar
[4]
B. Moulton, M. J. Zaworotko, Chem. Rev. 101(2001) 1629-1658.
Google Scholar
[5]
S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 100(2000) 853-908.
Google Scholar
[6]
P. J. Hagrman, D. Hagrman, J. Zubieta,Angew. Chem., Int. Ed. 38(1999) 2638-2684.
DOI: 10.1002/(sici)1521-3773(19990917)38:18<2638::aid-anie2638>3.0.co;2-4
Google Scholar
[7]
Q. W. Wang, X. M. Li, Q. L. Meng, B. Liu, G.. G. Gao, Chinese J. Struct. Chem. 28(2009), 335-337.
Google Scholar
[8]
X. M. Li, Q. W. Wang, B. Liu, Z. T. Wang, Chinese J. Inorg. Chem. 26(2010) 1904-1907.
Google Scholar
[9]
X. M. Li, Q. W. Wang, Z. T. Wang, B. Liu, Chinese J. Struct. Chem. 30(2011) 176-179.
Google Scholar
[10]
G. M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structure, University of Göttingen, Germany 1997.
Google Scholar
[11]
G. M. Sheldrick, SHELXS 97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany 1997.
Google Scholar
[12]
M. Devereux, D. O. Shea, A. Kellett, M. McCann, M. Walsh, D. Egan, C. Deegan, K. Kedziora, G. Rosair, H. J. Müller-Bunz, Inorg. Biochem. 101(2007) 881-892.
DOI: 10.1016/j.jinorgbio.2007.02.002
Google Scholar
[13]
L. J. Farrugia, X. A. Wing, Windows Program for Crystal Structure Analysis, University of Glasgow, Glasgow, UK 1988.
Google Scholar
[14]
D. Rendell, Fluorescence and Phosphorescence, John Willey & Sons, New York, 1987.
Google Scholar
[15]
S. L. Zheng, X. M. Chen, Aust. J. Chem. 57(2004) 703-712. Table 1. Selected Bond Lengths (Å) and Bond Angles (°) Bond
Dist.
Bond
Dist.
Bond
Dist.
Cd(1)–O(1)
2.424(3)
Cd(1)–O(2)
2.341(3)
Cd(1)–N(1)
2.334(3)
Cd(1)–O(4A)
2.224(2)
Cd(1)–O(5)
2.257(2)
Cd(1)–N(2)
2.372(3)
Angle
(°)
Angle
(°)
Angle
(°)
O(4A)–Cd(1)–O(5)
107.20(10)
N(1)–Cd(1)–O(2)
159.15(11)
O(4A)–Cd(1)–O(1)
146.83(9)
O(4A)–Cd(1)–N(1)
88.60(10)
O(4A)–Cd(1)–N(2)
91.08(10)
O(5)–Cd(1)–O(1)
81.79(9)
O(5)–Cd(1)–N(1)
84.26(9)
O(5)–Cd(1)–N(2)
148.85(10)
N(1)–Cd(1)–O(1)
124.41(10)
O(4A)–Cd(1)–O(2)
93.57(10)
N(1)–Cd(1)–N(2)
70.90(10)
O(2)–Cd(1)–O(1)
54.69(9)
O(5)–Cd(1)–O(2)
114.68(11)
O(2)–Cd(1)–N(2)
88.31(11)
N(2)–Cd(1)–O(1)
96.70(10)
Symmetry transformations used to generate the equivalent atoms: A: –x+1, –y, –z+1 Fig. 1. Molecular structure of the title coordination polymer Fig. 2. 3-D Supramolecular network viewed along the c axis in 1 Fig. 3. Solid-state emission spectrum of 1 at room temperature
Google Scholar