The Dynamics of Entropy Exchange between Field and Atom

Article Preview

Abstract:

This paper investigate the partial entropy changes of the field and the atom in a system of an atom interacting with a single quantized cavity field including acceptable kinds of nonlinearities of both the field and the intensity-dependent atom-field coupling. The work shows that the substantial entropy exchange can occur when the mixed state parameters of the atom and the average number of photons in the cavity are respectively bounded within certain parameter regimes, and the substantial entropy exchange is independent of the parameters of the non-linear medium, the intensity of non-linear coupling and detuning. It is also explored that the detuning leads to collapse-revival of the field and atomic partial entropy changes occurring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Nielsen and I.L. Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2000).

Google Scholar

[2] S.J.D. Phoenix and P.L. Knight: Phys. Rev. A Vol. 44 (1991), p.6023.

Google Scholar

[3] R. Horodecki and M. Horodecki: Phys. Rev. A Vol. 54 (1996), p.1838.

Google Scholar

[4] N.J. Cerf and C. Adami: Phys. Rev. Lett. Vol. 79 (1997), p.5194.

Google Scholar

[5] R. Horodecki, M. Horodecki and P. Horodecki: Phys. Rev. A Vol. 59 (1999), p.1799.

DOI: 10.1103/physreva.59.1799

Google Scholar

[6] C. Brukner and A. Zeilinger: Phys. Rev. Lett. Vol. 83 (1999), p.3354.

Google Scholar

[7] S. Abe and A.K. Rajagopal: Phys. Rev. A Vol. 60 (1999), p.3461.

Google Scholar

[8] C. Tsallis, S. Lloyd and M. Baranger: Phys. Rev. A Vol. 63 (2001), p.042104.

Google Scholar

[9] F. Giraldi and P. Grigolini: Phys. Rev. A Vol. 64 (2001), p.032310.

Google Scholar

[10] N. Canosa and R. Rossignoli: Phys. Rev. Lett. Vol. 88 (2002), p.170401.

Google Scholar

[11] C.H. Bennett, H.J. Bernstein, S. Popescu and B. Schumacher: Phys. Rev. A Vol. 53 (1996), p. (2046).

Google Scholar

[12] S. Popescu and D. Rohrlich: Phys. Rev. A Vol. 56 (1997), p. R3319.

Google Scholar

[13] L. Amico, R. Fazio, A. Osterloh and V. Vedal: Rev. Mod. Phys. Vol. 80 (2008), p.517.

Google Scholar

[14] V. Vedral: Rev. Mod. Phys. Vol. 74 (2002), p.197.

Google Scholar

[15] S. Furuichi and M. Ohya: Lett. Math. Phys. Vol. 49 (1999), p.279.

Google Scholar

[16] S.J.D. Phoenix and P.L. Knight: Ann. Phys. (N.Y. ) Vol. 186 (1988), p.381.

Google Scholar

[17] E. Boukobza and D.J. Tannor: Phys. Rev. A Vol. 71 (2005), p.063821.

Google Scholar

[18] M. Abdel-Aty, S. Furuichi and A.S.F. Obada: J. Opt. B Vol. 4 (2002), p.37.

Google Scholar

[18] P. Chang, B. Shao and J. Zou: Phys. Lett. A Vol. 354 (2006), p.48.

Google Scholar

[19] X.Q. Yan, B. Shao and J. Zhou: Chaos, Solitons and Fractals Vol. 37 (2008), p.835.

Google Scholar