CO Adsorption on the AunS(n=1~6) Clusters: The First-Principles Study

Article Preview

Abstract:

Density functional theory (DFT) calculations are performed to investigate CO bonded on the AunS (n=1~6) bimetallic clusters. It is found that the adsorption energies of CO on the AunS(n=1~6) clusters are greater than those on the pure Au clusters of corresponding sizes. This means that doped S atom can enhance CO adsorption on the Au clusters. Furthermore, through the Mulliken population analysis, we can see that charges transfer from the Au clusters to S atom, while charges donate to the Au clusters from the CO in CO/AunS sytem.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 341-342)

Pages:

42-47

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Haruta, Catal. Today, 36 (1997) 153-166.

Google Scholar

[2] M. Haruta, M. Date, Appl Catal A Gen, 222 (2001) 427-437.

Google Scholar

[3] F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta, J. Catal., 202 (2001) 256-267.

DOI: 10.1006/jcat.2001.3290

Google Scholar

[4] W. An, Y. Pei, X.C. Zeng, Nano Lett., 8 (2008) 195-202.

Google Scholar

[5] G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng, 41 (1999) 319-388.

Google Scholar

[6] R.J. Davis, Science, 301 (2003) 926-927.

Google Scholar

[7] D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, A. Travlos, Catal. Today, 72 (2002) 51-57.

DOI: 10.1016/s0920-5861(01)00477-1

Google Scholar

[8] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, J. Catal., 188 (1999) 176-185.

Google Scholar

[9] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 301 (2003) 935-938.

Google Scholar

[10] R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal., 199 (2001) 48-59.

Google Scholar

[11] G.C. Bond, D.T. Thompson, Gold Bulletin, 33 (2000) 41-51.

Google Scholar

[12] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed., 45 (2006) 7896-7936.

Google Scholar

[13] M. Valden, X. Lai, D.W. Goodman, Science, 281 (1998) 1647-1650.

Google Scholar

[14] P.J. Feibelman, D.R. Hamann, Phys. Rev. Lett., 52 (1984) 61-64.

Google Scholar

[15] L.Y. Gan, Y.X. Zhang, Y.J. Zhao, Journal of Physical Chemistry C, 114(2010) 996-1003.

Google Scholar

[16] C. Majumder, S.K. Kulshreshtha, Phys. Rev. B., 73 (2006) 155427-155421.

Google Scholar

[17] B. Delley, J. Chem. Phys., 92 (1990) 508-513.

Google Scholar

[18] B. Delley, J. Chem. Phys., 113 (2000) 7756-7764.

Google Scholar

[19] J.P. Perdew , Y. Wang, Phys. Rev. B, 45 (1992) 13244-13249.

Google Scholar

[20] C.D.R. Lide, Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, (1995).

Google Scholar

[21] T.K.J. a. Pettiette-Hall.C. L, J. Chem. Phys., 96 (1992) 3319-3329.

Google Scholar

[22] E.K. Ho, W.J. Lingerger, Chem. Phys., 93 (1990) 6987-7002.

Google Scholar

[23] C.E. Moore, Atomic Energy Levels. Ed. Washington, DC, (1958).

Google Scholar

[24] Cheeseman M.A., Eyler J.R., J. Phys. Chem., 96 (1992) 1082-1087.

Google Scholar

[25] A. Deka, R.C. Deka, J. Mol. Struc-Theochem, 870 (2008) 83-93.

Google Scholar