A Kernel Canonical Correlation Analysis Based Idle-State Detection Method for SSVEP-Based Brain-Computer Interfaces

Abstract:

Article Preview

In this paper, we propose a kernel canonical correlation analysis (KCCA) based idle-state detection method for asynchronous steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. KCCA method can offer a flexible nonlinear solution to adequately extract nonlinear features of multi-electrode electroencephalogram signals. Based on this method, an ensemble KCCA coefficients feature model is proposed by weighting effectively multi-harmonic information and afterwards a threshold classification strategy for idle-state detection is presented. The weights of the model and optimal threshold are trained by the presented parameters learning scheme. Using our method, offline analysis was performed on 10 subjects with 8 fixed common electrodes. The results showed that the idle state could be detected with 95.9% average accuracy when SSVEP could be determined with 93.8% average accuracy. Further, the analysis verified the effectiveness and significant superiority of our method over other widely used ones.

Info:

Periodical:

Advanced Materials Research (Volumes 341-342)

Edited by:

Liu Guiping

Pages:

634-640

DOI:

10.4028/www.scientific.net/AMR.341-342.634

Citation:

Z. M. Zhang and Z. D. Deng, "A Kernel Canonical Correlation Analysis Based Idle-State Detection Method for SSVEP-Based Brain-Computer Interfaces", Advanced Materials Research, Vols. 341-342, pp. 634-640, 2012

Online since:

September 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.