[1]
Chen, Y., Yu, S.Z., Wx, Li., Artificial feeding and hospitalization in the first 18 months of life. Pediatric, Pediatrics, vol. 81, no. 1, pp: 58–62, (1988).
Google Scholar
[2]
Burton, H., Reviews of the progress of Dairy Science: The bacteriological, chemical biochemical and physical changes that can occur in milk at temperatures of 100–150 ºC, J Dairy Res, vol. 51, no. 2, pp: 341–363, (1984).
DOI: 10.1017/s002202990002361x
Google Scholar
[3]
Jeurnink, T., De Kruif, K., Changes in milk on heating: viscosity measurements, J Dairy Res, vol. 60, no, 2, pp: 139–150, (1993).
DOI: 10.1017/s0022029900027461
Google Scholar
[4]
Ford, J. E., Hurrell, R.F., Finot, P.A., Storage of milk powders under adverse conditions. 2. Influence on the content of water-soluble vitamins, Brit J Nutr, vol. 49, no. 3, pp: 355-364, (1983).
DOI: 10.1079/bjn19830044
Google Scholar
[5]
Hurrell, R.F., Finot, P.A., Ford, J.E., Storage of milk powders under adverse conditions. 1. Losses of lysine and of other essential amino acids as determined by chemical and microbiological methods, Brit J Nutr, vol. 49, no. 3, pp: 343-354, (1983).
DOI: 10.1079/bjn19830043
Google Scholar
[6]
Hall, G., Lingnert, H., Flavor changes in whole milk powder during storage. 1. Odor and flavor profiles of dry milk with additions of antioxidants and stored under air or nitrogen, J Food Quality, vol. 7, no. 4, pp: 131-151, (1984).
DOI: 10.1111/j.1745-4557.1985.tb01056.x
Google Scholar
[7]
Renner, E., Storage stability and some nutritional aspects of milk powders and ultra high temperature products at high ambient temperatures, J Dairy Res, vol. 55, no. 1, pp: 125-142, (1988).
DOI: 10.1017/s0022029900025942
Google Scholar
[8]
Min, D.B., Lee, S.H., Lindamood, J.B., Chang, K.S., Reineccius, G.A., Effects of packaging conditions on the flavor stability of dry whole milk, J Food Sci, vol. 54, no. 5, pp: 1222-1224, (1989).
DOI: 10.1111/j.1365-2621.1989.tb05959.x
Google Scholar
[9]
Chan, S.H., Gray, J.I., Gomaa, E.A., Harte, B.R., Kelly, P.M., Buckley, D.J., Cholesterol oxidation in whole milk powders as influenced by processing and packaging, Food Chem, vol. 47, no. 4, pp: 321-328, (1993).
DOI: 10.1016/0308-8146(93)90171-b
Google Scholar
[10]
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent, J Biol Chem, vol. 193, no. 1, pp: 265–275, (1951).
DOI: 10.1016/s0021-9258(19)52451-6
Google Scholar
[11]
Isabel, V.O., Ferreira, Helena, C., Detection and quantification of bovine, ovine and caprine milk percentages in protected denomination of origin cheeses by reversed-phase high-performance liquid chromatography of beta-lactoglobulins, J Chromatogr A, vol. 1015, no. 1-2, pp: 111–118, (2003).
DOI: 10.1016/s0021-9673(03)01261-5
Google Scholar
[12]
Kummer, A., Kitts, D.D., Li, C.E., Loss, J.N., Skura, B.J., Nakai, S., Quantification of bovine IgG in milk using enzyme-linked immunosorbent assay, Food Agric Immunol, vol. 4, no. 2, pp: 93-102, (1992).
DOI: 10.1080/09540109209354757
Google Scholar
[13]
Zhao, X., Groenewegen, P.P., McBride, BW., Burton, J. H., Elsasser, T.H., Radioimmunoassay for insulin-like growth factor-I in bovine milk, Can J Anim Sci, vol. 71, no. 3, pp: 669-674, (1991).
DOI: 10.4141/cjas91-082
Google Scholar
[14]
Katagiri, S., Takahashi, Y., Changes in EGF concentrations during estrous cycle in bovine endometrium and their alterations in repeat breeder cows, Theriogenology, vol. 62, no. 1-2, pp: 103-112, (2004).
DOI: 10.1016/j.theriogenology.2003.08.019
Google Scholar
[15]
Ferrer, E., Alegría, A., Rosaura, Farré., Abellán, P., Romero, F., "Fluorometric determination of chemically available lysine: Adaptation, validation and application to different milk products, Nahrung, vol. 47, no. 6, pp: 403-407. (2003).
DOI: 10.1002/food.200390090
Google Scholar
[16]
Anema, S. G., The effect of chymosin on κ-casein-coated polystyrene latex particles and bovine casein micelles, Int Dairy J, vol. 7, no. 8-9, pp: 553-558, (1997).
DOI: 10.1016/s0958-6946(97)00048-4
Google Scholar
[17]
Chen, W.L., Wang, M.T.H., Liau, C.Y., Ho, J.C., Hong, K.C., Mao, J.T., ß-lactoglobulin is a thermal marker in processed milk as studied by electrophoresis and circular dichroic spectra, J Dairy Sci, vol. 88, no. 5, pp: 1618-1630, (2005).
DOI: 10.3168/jds.s0022-0302(05)72833-2
Google Scholar
[18]
Li, C.E., Kummer, A., Losso, J.N., Kitts, D.D., Nakai, S., Stability of bovine immunoglobulins to thermal treatment and processing, Food Res Int, vol. 28, no. 1, pp: 9-16, (1995).
DOI: 10.1016/0963-9969(95)93325-o
Google Scholar
[19]
Miller, M.A., Hildebrandt, J.R., White, T.C., Hammond, B.G., Madsen, K.S., Collier, R.J., Determination of insulin-like growth factor-I (IGF-I) concentrations in raw, pasteurized and heat-treated milk, J. Dairy Sci, vol. 74, no. 9, pp: Suppl. 1, 186, (1989).
Google Scholar
[20]
Rehman, Z.U., Effect of storage on the available lysine and lactose contents of UHT processed whole and skimmed buffalo milk, Milchwissenschaft, vol. 57, no. 11-12, pp: 629-631, (2002).
Google Scholar
[21]
Anantharaman, K., Finot, P. A., Nutritional aspects of food proteins in relation to technology, Food Rev Int, vol. 9, no. 4, pp: 629-655, (1993).
DOI: 10.1080/87559129309540981
Google Scholar
[22]
Morales, F.J., Romero, C., Jiménez-Pérez, S., Evaluation of heat-induced changes in Spanish commercial milk: hydroxymethylfurfural and available lysine content, Int J Food Sci Tech, vol. 31, no. 5, pp: 411–418, (1996).
DOI: 10.1046/j.1365-2621.1996.00357.x
Google Scholar
[23]
Corredig, M., Dalgleish, D,G., Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk, Food Res Int, vol. 29, no. 1, pp: 49–55, (1996).
DOI: 10.1016/0963-9969(95)00058-5
Google Scholar
[24]
Oldfield, D.J., Singh, H., Taylor, M.W., Pearce, K.N., Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH adjusted skim milk, Int Dairy J, vol. 10, no. 8, pp: 509–518, (2000).
DOI: 10.1016/s0958-6946(00)00087-x
Google Scholar
[25]
Anema, S.G., Li, Y., Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk, J Agr Food Chem, vol. 51, no. 6, pp: 1640-1646, (2003).
DOI: 10.1021/jf025673a
Google Scholar
[26]
Vasbinder, A.J., Alting, A.C., de Kruif, C.G., Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics, Colloid Surface B: Bio, vol. 31, no. 1-4, pp: 115-123, (2003).
DOI: 10.1016/s0927-7765(03)00048-1
Google Scholar