Study on Changes of Nitrobenzene Degrading Bacteria in ABR Reactor

Article Preview

Abstract:

By adding nitrobenzene to ABR (anaerobic baffled reactor) acclimation the flora in it, take 5 chambers sludge, extracted DNA and using PCR-DGGE technique amplification and separation product of bacterial 16S rDNA gene V3 region, then study the changes and diversity anaerobic sludge bacteria. The results showed that there was a succession in the communities of 5 reactor compartment, and the microbial diversity changes showing a characteristic of synergistic. ABR reactor has obvious characteristics of multi-phase process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

1269-1275

Citation:

Online since:

September 2011

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] MA Xiping, FU Baorong, LIU Jie, et al. Monitor the Mutagenicity of Nitrobenzene in Pharmaceutical Wastewater by the Anes Test. Journal Of Liaoning University(Natural Science Edition), 1999, 26(2): 175-178.

Google Scholar

[2] Arlene K. Roman, et al. Composition and diversity of ammonia‐oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology, 2003(43): 195-206.

DOI: 10.1111/j.1574-6941.2003.tb01059.x

Google Scholar

[3] Wang Feng, Fu Yi-gang, Xia Si-qing, et al. Characteristics of Municipal Sewage Chem-Bioflocculation Treatment Process by Using PCR-DGGE Technology. Environmental Science, 2004, 25(6): 74-79.

Google Scholar

[4] Fisher S G, Lerman L S DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA, 1983, 80: 1579-1583.

DOI: 10.1073/pnas.80.6.1579

Google Scholar

[5] Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appleed and Environmental Microbiology, 1993, 59: 695-700.

DOI: 10.1128/aem.59.3.695-700.1993

Google Scholar

[6] Xing Defeng, Ren Nanqi, Song Yeying, et al. Application of DG-DGGE to analyz microbial community diversity and popolation dynamics in fermentative hyudrogen-producing system. Acta Ecologica Sinica, 2005, 25(7): 296-301.

Google Scholar

[7] Muyzer G, and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 1998, 73: 127-141.

DOI: 10.1007/springerreference_76317

Google Scholar

[8] Bernard L, Courties C, Duperray C, et al. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry, 2001, 43: 314-321.

DOI: 10.1002/1097-0320(20010401)43:4<314::aid-cyto1064>3.0.co;2-h

Google Scholar

[9] Casamayor E O, Schafer H, Baneras L, et al. Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2000, 66: 499-508.

DOI: 10.1128/aem.66.2.499-508.2000

Google Scholar

[10] M J Ferris, G Muyzer, D. M. Ward. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol, 1996, 62: 340-346.

DOI: 10.1128/aem.62.2.340-346.1996

Google Scholar

[11] Iwamoto, T, Tani, K, Nakamura, K. Suzuki, Y, et al. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology, 2000, 32: 129-141.

DOI: 10.1111/j.1574-6941.2000.tb00707.x

Google Scholar

[12] Alex T. Nielsen, Wen-Tso Liu, Carlos Filipe, et al. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Appl Environ Microbiol, 1999, 65(3): 1251-1258.

DOI: 10.1128/aem.65.3.1251-1258.1999

Google Scholar

[13] Van Elsas J D, Duarte G F, Rosado A S, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the sea environment. Microbial Method, 1998, 32: 133-154.

DOI: 10.1016/s0167-7012(98)00025-6

Google Scholar

[14] Thomas P Curtis, Noel G Craine. The comparison of the diversity of activated sludge plants. Water Sci Techol, 1998, 37: 71-78.

Google Scholar

[15] Eichner C A, Erb RW , Timm is K N , Thermal Gradient Gel Electrophoresis Analysis of Bioprotection from Pollutant Shocks in the Activated Sludge Microbial Community. Appl Environ Microbiol, 1999, 65(1): 102-109.

DOI: 10.1128/aem.65.1.102-109.1999

Google Scholar

[16] Murray A E, Hollibaugh J T, Orrego C. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol, 1996, 62: 2676-2680.

DOI: 10.1128/aem.62.7.2676-2680.1996

Google Scholar

[17] Donner G, Schwarz K, Hoppe HG, Muyzer G. Profiling the succession of bacterial populations in pelagic chemoclines. Arch Hydrobiol Spec Issues Advanc Limnol, 1996, 48: 7-14.

Google Scholar