Fabrication of Water Treatment Membrane Using Templating Method - A Critical Review

Article Preview

Abstract:

The progress in the use of templating method for the controlled synthesis of nano, meso and macro porous materials opens many new application areas, one of which is the water treatment membrane. This paper presents a critical review on the fabrication of water treatment membrane using the templating method. Three templating methods are investigated including the block copolymer templating method, the polystyrene beads templating method, and the particles templating method. The future research directions are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

130-141

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mathias Ulbricht, Polymer (2006); 47: 2217–2262.

Google Scholar

[2] Yan M and Ramstrom O, editors, Molecularly Imprinted Materials, Science and Technology, Marcel Dekker, New York (2005).

Google Scholar

[3] Park C, Yoon J, Thomas EL. Polymer( 2003); 44: 6725-6735.

Google Scholar

[4] Elias HG Makromoleküle. Hüthig & Wepf, Basel (1990).

Google Scholar

[5] Forster S, Berton B, Hentze HP, Kramer E, Antonietti M, Lindner P Macromolecules (2001); 34: 4610.

Google Scholar

[6] Kresge CT, Leonowicz ME, Roth WJ, Vatuli JC, Beck JS Nature (1992); 359: 710.

Google Scholar

[7] Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL J Am Chem Soc (1992); 114: 10, 834.

DOI: 10.1021/ja00053a020

Google Scholar

[8] Hentze HP, Kramer E, Berton B, Forster S, Antonietti M, Dreja M Macromolecules (1999); 32: 5803.

Google Scholar

[9] Kramer E PhD thesis, University Potsdam (2000).

Google Scholar

[10] Gotner CG, Antonietti M Adv Mater (1997); 9: 1.

Google Scholar

[11] Gotner CG, Henke S, Weibnberger MC, Antonietti M Angew Chem Int Ed Eng (1998); 37: 613.

Google Scholar

[12] Gotner CG, Weibnberger MC Acta Polym(1998); 49: 704.

Google Scholar

[13] Weionberger MC, Gotner CG, Antonietti M Ber Bunsenges Phys Chem (1997); 101: 1679.

Google Scholar

[14] Gotner CG, Berton B, Kramer E, Antonietti M Adv Mater (1999); 11: 395.

Google Scholar

[15] Gotner CG, Berton B, Kramer E, Antonietti M Chem Commun (1998); 2287.

Google Scholar

[16] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279: 548.

Google Scholar

[17] Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson GH, Chmelka BF. Macromolecules (1999) 32: 4332.

DOI: 10.1021/ma9817323

Google Scholar

[18] Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA. J Am Chem Soc (2002); 124: 12761.

DOI: 10.1021/ja0278584

Google Scholar

[19] Yang PD, Zhao DY, Chmelka BF, Stucky GD (1998) Chem Mater 10: (2033).

Google Scholar

[20] Kramer E, Foster S, Gotner CG, Antonietti M Langmuir (1998); 14: (2027).

Google Scholar

[21] Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. J Am Chem Soc (1998); 120: 6024.

Google Scholar

[22] Yang PD, Deng T, Zhao DY, Feng PY, Pine D, Chmelka BF, Whitesides GM, Stucky GD Science (1998); 282: 2244.

DOI: 10.1126/science.282.5397.2244

Google Scholar

[23] Yang PD, Zhao DY, Margo lese DI, Chmelka BF, Stucky GD Nature (1998); 396: 6707.

Google Scholar

[24] Hashimoto T, Tsutsumi T, Funaki Y. Langmuir (1997); 13: 6869.

Google Scholar

[25] Ndoni S, Vigild ME, Berg RH. J Am Chem Soc (2003); 125: 13366.

Google Scholar

[26] Liu G, Ding J, Stewart S. Angew Chem Int Ed (1999); 38: 835.

Google Scholar

[27] Zalusky AS, Olayo-Valles R, Taylor CJ, Hillmyer MA. J Am Chem Soc (2001); 123: 1519.

DOI: 10.1021/ja003936g

Google Scholar

[28] Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA. J Am Chem Soc (2002); 124: 12761.

DOI: 10.1021/ja0278584

Google Scholar

[29] Rzayev J, Hillmyer MA. Macromolecules (2005); 38: 3.

Google Scholar

[30] Ludwigs S, Bo¨ker A, Abetz V, Mu¨ller AHE, Krausch G. Polymer (2003); 44: 6815.

Google Scholar

[31] Ludwigs S, Bo¨ker A, Rehse N, Voronov A, Magerle R, Krausch G. Nat Mater (2003); 2: 744.

Google Scholar

[32] Ludwigs S, Schmidt K, Krausch G. Macromolecules (2005); 38: 2376.

Google Scholar

[33] Xiang H, Shin K, Kim T, Moon SI, McCarthy TJ, Russell TP. Macromolecules 2005; 38: 1055.

Google Scholar

[34] Akthakul A, Salinaro RF, Mayes AM. Macromolecules (2004); 37: 7663.

Google Scholar

[35] R. R. Bhave, Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Reinhold, New York, 1991. D.W. Schaefer, MRS Bull. (1994); 19(4), 14.

Google Scholar

[36] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature (1994); 368, 321.

Google Scholar

[37] H. W. Ballew, Am. Biotechnol. Lab (1997); May, 8.

Google Scholar

[38] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ (1995).

Google Scholar

[39] G. Widawski, M. Rawiso, B. François, Nature (1994); 369, 387.

Google Scholar

[40] D. J. LeMay, R. W. Hopper, L. W. Hrubesh, R. W. Pekara, MRS Bull (1990); 15(12), 19. W. R. Even, Jr., D. P. Gregory, MRS Bull (1994), 19(4), 29.

DOI: 10.1557/s0883769400058103

Google Scholar

[41] D. Walsh, S. Mann, Nature (1995); 377, 320.

Google Scholar

[42] A. Imhof, D. J. Pine, Nature (1997); 389, 948.

Google Scholar

[43] S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature (1997); 385, 420.

Google Scholar

[44] G. A. Ozin, Acc. Chem. Res (1997); 30, 17.

Google Scholar

[45] D. Velev, T.A. Jede, R. F. Lobo, A. M. Lenhoff, Nature (1997); 389.

Google Scholar

[46] S. H. Park, D. Qin, Y. Xia, Adv. Mater (1998); 10, 1028.

Google Scholar

[47] S. H. Park, Y. Xia, Chem. Mater (1998); 10 (7).

Google Scholar

[48] Sang Hyun Park, Younan Xia. Adv. Mater (1998); 10, No. 13.

Google Scholar

[49] Feng Yan, Werner A Goedel. Adv Mater (2004); 16, No. 11, June 4.

Google Scholar

[50] Hui Xu, Werner A. Goedel. Langmuir (2002); 18, 2363-2367.

Google Scholar