Comparative Evaluation of the Chemical Composition of Essential Oil from Twig, Leaf and Root of Clerodendrum inerme (L.) Gaertn

Article Preview

Abstract:

This study was designed to comparative evaluate the chemical composition of the essential oil from twig, leaf and root parts of Clerodendrum inerme(L.) Gaertn. GC-MS analyses of the oils revealed the presence of 8, 8 and 6 compounds in the essential oils obtained by hydrodistillation from different parts, respectively. Higher amounts of esters were found to compose a major chemotype in diverse parts of the plant. Dibutyl phthalate was the main component of all the essential oils attaining in average 34.22%, 59.28% and 44.27% and the other kind of esters accounted for 38.30%, 17.28% and 10.89% in the twig, leaf and root parts, respectively. In addition, some pharmaceutical components such as stigmasterol, linoleic acid and ferruginol were discovered. The study offers theoretic basis for utilization of the traditional folk herb C. inerme.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

22-27

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.W. Reische, D.A. Lillard and R.R. Eitenmiller: Chemistry, nutrition and biotechnology, (1998), p.423–448.

Google Scholar

[2] K. Hirasa and M. Takemasa: Spice science and technology, New York: Dekker Inc. (1998).

Google Scholar

[3] A.A. Munir: J. Adel Bot. Gard., vol. 11 (1989), p.101–173.

Google Scholar

[4] Z.Y. Wu, Flora Repubulicae Popularis Sinicae, Science Press, vol. 11 (2010), p.154–155.

Google Scholar

[5] M.B. Reddy, K.R. Reddy and M.N. Reddy, Int. J. Crude Drug Res., vol. 26 (1988), p.189–196.

Google Scholar

[6] M.B. Reddy, K.R. Reddy and M.N. Reddy, Int. J. Crude Drug Res., vol. 27 (1989), p.145–155.

Google Scholar

[7] R. Pandey, R.K. Verma, S.C. Singh and M.M. Gupta, Phytochemistry, vol. 63 (2003), p.415–420.

Google Scholar

[8] T. Kanchanapoom, R. Kasai, P. Chumsri, Y. Hinraga and K. Yamasaki, Phytochemistry, vol. 58 (2001), p.333–336.

DOI: 10.1016/s0031-9422(01)00208-4

Google Scholar

[9] A.M. El-Shamy, A.R.O. El-Shabrawy and N. El-Fiki: Zagazig J. Pharm. Sci., vol. 5 (1996), p.49–53.

DOI: 10.21608/zjps.1996.185015

Google Scholar

[10] M. Parveena, Z. Khanama, M. Alib and S. Z. Rahmanc: Nat. Prod. Res., vol. 24 (2010), p.167–176.

Google Scholar

[11] R. Pandey, R.K. Verma and M.M. Gupta: Phytochemistry, vol. 66 (2005), p.643–648.

Google Scholar

[12] L. Parks, J. Ostby, C. Lambright, B. Abbott, G.D. Klinefleter, N. Barlow and L.J. Gray: Toxicol. Sci., vol. 58 (2000), p.339–349.

Google Scholar

[13] E. Mylchreest, M. Sar, D. Wallace and P.M.D. Foster, Reprod. Toxicol., vol. 16 (2002), p.19–28.

Google Scholar

[14] O. Gabay, C. Sanchez, C. Salvat, F. Chevy, M. Breton, G. Nourissat, C. Wolf, C. Jacques and F. Berenbaum: Am. J. Clin. Nutr. vol. 18 (2010), p.106–116.

DOI: 10.1016/j.joca.2009.08.019

Google Scholar

[15] S. Panda, M. Jafri, A. Kar and B.K. Meheta: Fitoterapia, vol. 80 (2009), p.123–126.

DOI: 10.1016/j.fitote.2008.12.002

Google Scholar

[16] L. D. Whigham, M. E. Cook and R. L. Atkinson: Pharmacol. Res., vol. 42 (2000), pp.503-510.

Google Scholar

[17] K.H. Son, H.M. Oh, S.K. Choi, D.C. Han and B.M. Kwon: Bioorg. Med. Chem. Lett., vol. 15 (2005), p.2019–(2021).

Google Scholar

[18] C. Flores, J. Alarcón, J. Becerra, M. Bittner, M. Hoeneisen, M. Silva, Bol. Soc. Chil. Quím., vol. 46 (2001), p.61–64.

DOI: 10.4067/s0366-16442001000100010

Google Scholar

[19] C. Areche, C. Theoduloz, T. Yáñez, A.R. Souza-Brito, V. Barbastefano, D. De Paula, A. L. Ferreira, L. Anderson, G. Schmeda-Hirschmann and J.A. Rodríguez: J. Pharm. Pharmacol., vol. 60 (2008), p.245–251.

DOI: 10.1211/jpp.60.2.0014

Google Scholar