The Thermal and Rheological Properties of Starch Plasticized in Glycerol-Water Mixture

Article Preview

Abstract:

The interaction between glycerol and water molecules is very complex, which displays different plasticization properties. In this paper, it studied the influence of glycerol-water mixture with different glycerol ratio on the thermal and rheological properties of starch. In water-rich mixture (glycerol ratio is less than 50%), its plasticization effect is similar as water, but will be impaired with the increase of glycerol. In glycerol-rich mixture (glycerol ratio is more than 90%), its lubrication and plasticization effect is similar as glycerol, and since glycerol can abstract lipid and destroy amylose-lipid complex, the peak M2 disappeared in DSC curves. In transition mixture, the mutual interactions reach maximal and less active hydroxy left, so the plasticization effect is the weakest, which is reflected by the highest loading peak and phase transition peak in torque-time curve by rheometer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

38-42

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.W. Xie, L. Yu, H.S. Liu, and L. Chen: Starch-Starke. Vol. 58 (2006), p.131.

Google Scholar

[2] H.S. Liu, F.W. Xie, L. Yu, L. Chen, and L. Li: Prog. Polym. Sci. Vol. 34 (2009), p.1348.

Google Scholar

[3] L. Yu, K. Dean, and L. Li: Prog. Polym. Sci. Vol. 31 (2006), p.576.

Google Scholar

[4] J.H. Yang, and J.G. Yu: Carbohyd. Polym. Vol. 63 (2006), p.218.

Google Scholar

[5] R.L. Shogren: Carbohyd. Polym. Vol. 19 (1992), p.83.

Google Scholar

[6] J.H. Yang, J.G. Yu, and X.F. Ma: Carbohyd. Polym. Vol. 66 (2006), p.110.

Google Scholar

[7] P. Liu, H.S. Liu, L. Yu, L. Chen, and L. Li: Carbohyd. Polym. Vol. 77 (2009), p.250.

Google Scholar

[8] P. Liu, L. Yu, X. Wang, D. Li, L. Chen, and X. Li: J. Cereal. Sci. Vol. 51 (2010), p.388.

Google Scholar

[9] J.J.G. van Soest, and N. Knooren: J. Appl. Polym. Sci. Vol. 64 (1997), p.1411.

Google Scholar

[10] P. Liu, F.W. Xie, M. Li, X Liu, L. Yu, P.J. Halley, and L. Chen: Carbohyd. Polym. Vol. 85 (2011), p.180.

Google Scholar

[11] A.M.B.Q. Habitante, P.J.A. Sobral, R.A. Carvalho, J. Solorza-Feria, and P.V.A. Bergo: J. Therm. Calorim. Vol. 93 (2008), p.599.

DOI: 10.1007/s10973-007-8950-6

Google Scholar

[12] Y. Marcus: Phys. Chem. Chem. Phys. Vol. 2 (2000), p.4891.

Google Scholar

[13] G. D'Errico, O. Ortona, F. Capuano, and V. Vitagliano: J. Chem. Eng. Data. Vol. 49 (2004), p.1665.

Google Scholar

[14] L. Yu, and G. Christie, Carbohyd. Polym. Vol. 46 (2001), p.179.

Google Scholar

[15] T. Xue, L. Yu, F.W. Xie, L. Chen, and L. Li: Food. Hydrocolloid. Voc. 22 (2008), p.973.

Google Scholar

[16] H. Liu, L. Yu, F.W. Xie, and L. Chen: Carbohyd. Polym. Vol. 65 (2006), p.357.

Google Scholar

[17] S. Raphaelides, and J. Karkalas: Carbohyd. Res. Vol. 172 (1988), p.65.

Google Scholar

[18] C.G. Biladeris, C.M. Page, L. Slade, and R.R. Sirett: Carbohyd. Polym. Vol. 5 (1985): p.367.

Google Scholar

[19] G. Jovanovich, and M.C. Añón: Biopolymers. Vol. 49 (1999), p.81.

Google Scholar

[20] P.L. Russell: J. Cereal. Sci. Vol. 6 (1987), p.133.

Google Scholar